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Abstract

We have studied some techniques for the synthesis of nonlinear systems. The sys-
tems considered here are those that can be characterized by a finite set of Volterra
kernels. The approach is to consider the kernels one at a time, by using as basic ele-
ments in the synthesis linear systems and multipliers. We present a procedure for
testing a given kernel transform to determine whether or not the kernel can be realized
exactly with a finite number of linear systems and multipliers. The test is construc-
tive. If it is possible to realize the kernel exactly, a realization is given by the test;
if it is not possible to realize the complete kernel exactly, but is possible to break the
kernel up into several lower degree components, this will also be discovered by the
test. An extension to nonlinear systems of the impulse-train techniques of linear sys-
tem theory is given. We develop properties of sampling in nonlinear systems, in
order to facilitate the use of digital techniques in the synthesis of nonlinear systems.
Bandlimiting in nonlinear systems is discussed, and delay-line models for bandlimited
systems are given. The transform analysis of nonlinear sampled-data systems by
means of the multidimensional z-transform is presented. Computation algorithms for
input-output computations are given for direct computation from the multidimensional
convolution sum, the associated partial-difference equation, and a decomposition of the
nonlinear sampled-data system into linear sampled-data sysfems. A relationship
between time-variant and time-invariant systems is presented, in which time-variant
systems are shown to be related to time-invariant systems of higher degree. This en-
ables one to use for linear time-variant systems the properties and techniques devel-
oped for second-degree time-invariant systems. A note on the multidimensional
formulation of nonlinear systems from the differential equation point of view is given;
it is seen that some nonlinear problems in one dimension can be mapped into a linear
problem in a higher dimensional space.
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I. INTRODUCTION

1. 1 BRIEF HISTORICAL SKETCH

The use of functiona! analysis as a tool for the study of nonlinear systems was first

conceived by the late Norbert Wiener. Following his work, pioneering efforts toward

the engineering application of the theory of functional analysis in the representation of

nonlinear systems were made by H. E. Singleton,2 and A. G. Bose,3 who placed the

theory on a firm engineering basis for both discrete and continuous systems. Following
4

a series of lectures at the Massachusetts Institute of Technology by Professor Wiener,

several others, among them M. B. Brillant, D. A. George, and D. A. Chesler, 7

studied the theory of continuous nonlinear systems through the use of the Volterra func-

tional power series and the orthogonal Wiener G-functionals. A. D. Hause,8 George

Zames,9 Martin Schetzen,10 H. ! V',n Trees, 11,12 and n. J. SakriE cfn1 3 subsequently

made useful applications and extensions of the theory. Several otherj have contributed

at M. I. T. and elsewhere.

Functional analysis has proved to be a useful tool in the study of a wide class of non-

linear systems. It does not provide an all-encompassing theory; however, particularly

when compared with other approaches to the study of nonlinear systems, the startling

feature of the theory is not that it does not treat all systems, but rather that the class of

systems which it does treat is so very broad.

The basic equation of the theory is

y(t) z h. + I $... Shn(rl,. rn) x(t-rl) ... x(t-n) ) ... dV . n, (1)

na I

where x(t) is the system input time function, and y(t) is the corresponding output time

function. The family of kernels

(hn('I,...,T n ): n= 0, 1, 2 ... (2)

characterizes the system, in that knowledge of these kernels provides the means for

determining the output corresponding to a given input. Discussion of the scope and

properties of (1) and (2) may be found in the work of the authors cited above.

Methods for measuring the kernels of a system have been developed, 14,15 and others

are being studiedl; the correlation methods have been verified experimentally. 1 7

It has been observed, originally by Wiener, that the nonlinear system of (1) can be

represented as a linear memory section and a nonlinear no-memory section, followed by

amplification and summation. This representation provides a basis for a general syn-

thesis procedure for the class of nonlinear systems represented by (1). It is based on the

expansion of the input time function in an orthogonal series, with nonlinear no-memory

operations being performed on the coefficients of this expansion. Although general and

very powerful, it may involve, practically, an unreasonably large amount of equipment.

I



1.2 THE SYNTHESIS PROBLEM

From both a practical and a theoretical standpoint, it is very desirable to develop
means of synthesizing a nonlinear system from the kernels through which it is charac-
terized. The development of some procedures for the synthesis of nonlinear systems
is the problem toward which this research is directed.

Several points are inherent in this development of synthesis procedures for nonlinear
systems. A finite set of kernels must be adequate for the representation of the system
for the inputs of interest. The kernels must be at least approximately realizable with
a finite number of components selected for the synthesis. It is to be expected that some
means of synthesis may force the abandonment of the use of orthogonal expansions of the
input time function and some of the symmetrical properties of the kernels, both
extremply valuable propertie;s ii the analysis of systems. Also, synthesis procedures
as general as that suggested by Wiener should not be expected to be efficient for the same
broad class of systems; restrictions on both the inputs to be allowed and the kernels
should be expected as the price to be paid in development of synthesis procedures.

Little prior work on the synthesis of nonlinear systems, other than the orthogonal
expansion of Wiener, has been done. Jordan18 found the optimum finite-term orthogonal
expansions of the input time function. Van Trees' 11 algorithm for the determination of
the optimum compensator for a feedback system provides a solution in terms of the ker-
nels of the optimum system. A thesis at Stanford University by Ming Lei Liou, 19 and
work by Schetzen 2 0 are recent contributions. Schetzen characterized those second- and
third-degree kernels that are exactly realizable with a finite number of linear bystems
and multipliers, while Liou gives a procedure for the recognition of some simple struc-
tures of linear systems and polynomial nonlinear no-memory systems.

1. 3 THE PRESENT APPROACH

We consider a finite family of kernels

{hn(i , .... # n): n=O, oI2 ..... N} (3)

and attempt to synthesize a system characterized by theae kernels. We consider the
kernels one at a time and take as elementary building blocks linear systems and multi-
pliers. Any linear system that is realizable in the sense that its unit impulse response,
h(t), is zero for t < 0 is allowable. After synthesis with these elements is achieved for

each kernel of the family, simplification can be attempted. to yield a resulting system
that is an interconnection involving linear systems and nonlinear no-memory systems

whose input-output characteristic is given by a polynomial. We also consider sampled
systems, and the approximation of continuous systems by the sampled systems.

In Section II, the characterization and synthesis of kernels that are exactly realizable
w•. h a finite number of linear systems and multipliers is given. A detailed discus sion

z



of the effects of sampling in nonlinear systems is presented in Section III. Simula*'on

of continuous systems by sampled systems is discussed in Section IV. L, Sections V

and VI a multidimensional Z-transform analysis for nonlinear sampled-data systems is

developed and used to discuss the synthesis of nonlinear sampled-data systems. An

extension to nonlinear systems of the impulse-train techniques which have proved to be

so useful for linear systems is discussed in Section VII. In Section VIII we present some

miscellaneous results that have been by-products of research into the synthesis problem.

3



11. KERNELS REALIZABLE EXACTLY WITH A FINITE NUMBER OF

LINEAR SYSTEMS AND MULTIPLIERS

Although, as demonstrated by Wiener, it is possible to approximate arbitraril

closely any absolutely integrable kernel with a finite number of linear systems and no

"linear no-memory systems, not all systems representable by a finite set of Volterra
kernels can be realized exactly by means of these elements. We consider kernels of

,: the set

S(hjrT ..'"",r n ): n =0, 1, 2,... ,N}

one at a time. Since the tests developed to determine whether or not a kernel is exac

realizable by means of a finite number of linear systems and multipliers are construt
tive tests, we shall not only determine whether or not a kernel is exactly realizable, 1
we shall, if possible, find a realization for the kernel, In the event that some portior
of a kernel is exactly realizable but the remainder is not, we shall discover this also.

again achieving a realization of as much of the kernel as possible.
We define a kernel transform pair by the relations

h ...... i) =n _ ... Hn(S 1 ..... Sn) e dsl" dsr

(4
Hn(+00 ... , sn =.

Ho n 1a h n ( .lr I " " n ) e - d -rI . . d -r n( 5

2. 1 CANONIC" OR BASIC FORMS

We shall develop "canonic" or basic forms for kernels that are exactly realiza

with a finite number of linear systems and multipliers. These structures are no
canonic in any minimal or precise mathematical sense; they are, however, can

onic in the sense that any realization by linear systems and multipliers can be plat

in these forms.
Consider, first, a second-degree kernel and its transform:

h 2 (•,r I )O--2H 2 (s1 ,s 2 ).

It is clear that the most general second-degree system that can be formed with

one multiplier is as shown in Fig. 1. The most general second-degree sjstem thal
can be formed by using N multipliers is shown in Fig. 2. We shall find it convenie

to think of the system of Fig. I as a canonic form for second-degree systems. sin
all second-degree systems that can be realized exactly by means of a finite numbe
of linear systems and multipliers can be represented as a sum of these canoni,

4
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Fig. 1. Canonic second-degree system.

-x k (t)

-- 
kkbNlM I

Fig. 2. Second-degree system with N multipliers.
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sections, as in Fig. 2.

The kernel of the canonic section of Fig. 1 in terms of the impulse responses ka t),
kb(t), and kc (t) of the linear systems is

h2(TIT21 I Ia(T- (r) kb (a) dr (6)

and the corresponding kernel transform is

Kz(O,,S,) r. Ka(at) Kb(S2 ) K C(S 1+s 2). (7)

Then for the system of Fig. 2, we have the kernel and kernel transform

g. r, k a Ur1-0 kb (02 -w) k (c) do (8)
imi I

G2(S 2 ) Kai(S1) Kbi (s 2) K ci(S+2). (9)
2 12~~i a1  1c

If a given kernel or kernel transform can be expressed in the form (8) or (9), for some

N, then it can be realized with at most N multipliers; otherwise it cannot be real-

ized exactly with a finite number of linear systems and multipliers. Examples of both

types of systems are given by Schetzen.20

Let us now consider higher degree systems. It is clear that the canonic third-degree

system is as shown in Fig. 3. It contains five linear systems and two multipliers. In

Fig. 4 the same system Is shown with the second-degree canonic form composed of ka(t),
kb(t), and k c(t) and one of the multipliers shown explicitly. The kernel and the kernel

transform of this canonic section are given by

k3 (,r 1#rr 3) = k ke(a%) kd(r 3-C2)) kc(od ka(TIl-l-w2 ) kb(r2-'rl-" 2 ) dorldr 2  (10)

K3 (s 1,S2 ,s 3) K Ka(S1 ) Kb(92) Kc(Sl+s2) Kd(s 3 ) Ke(S I+S2 +s3 ) (11)

or by

k3(aT T23 f ke(0'2 ) kd(-r3-C2) k2 (-r1 -0 2 , T 2 "' 2 ) do 2  (12)

K3 (SlS 2,s 3) = K2 (SIS 2 ) Kd(S3 ) Ke (sl+S2+S3). (13)

where k2 (,r, T2 ) is the kernel of the second-degree system shown explicitly in Fig. 4.

If a third-degree system has a kernel transform H3 (s1.s 2,s 3 ) which can be

expressed as

6



H3 (s 1 ,s82 s 3 ) Ka (aI) Kb (82) J isK+8 ) Kd (83) K (as1+52+3) (14)
jl- 11

for some N, then it can be realized exactly with at most 2N multipliers. If it cannot be

expressed in this form, then it is impossible to realize the system exactly with a finite

number of linear systems and multipliers.

Now for the fourth-degree systems the situation is somewhat more complicated. Con-

sider the systems of Fig. S and Fig. 6. Each of them represents a fourth-degree system

-•-J k.(x 

k c ) CM-

" kb(t) 
e t

Fig. 3. Canonic third-degree system.

k : 2(T IOt2)

--• kd(t) P -V

Fig. 4. Alternative form for the canonic third-degree system.

and each of them is composed of seven linear systems and three multipliers, but the two

forms are essentially different; that is, no block diagram manipulations can reduce one

of these forms to the other. Hence, for fourth-degree systems, we have two canonic

sections. It is clear that any fourth-degree system that can be realized with three or

7
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Fig. 6. Second canonic form for fourth-degree systems.

kx k€

ke J

kb

Fig. 7. Fourth-degree system with two multipliers.
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less multipliers can be arranged into one of these canonic forms. For example, thefourth-degree system shown in Fig. 7 can be placed in the form of the section of Fig. 6.The kernel and kernel transforms for the canonic form of Fig. 5 are given by

k41(•,r,@','T$,T4) S (kga3 ) kf(r 4 -w$) ke"(r2 ) kd(r 3$-2-¢ 3 kc(o1) kb(r 2-@1i-2-03)

Ika(cl'-r r, -r3) de o2do- 3 (15)
K4 1 (S1 , 2S 3 6,,s4 = K(a 1 ) Kb(S2) KC(s 1 +s 2 ) Kd(S 3 ) Ke(s 1 +s2 +s3) Kf(s 4 ) Kg(s 1+S2 +S3 +s 4 )

or (16)
k41 (rVT1 2 yT3 T4 i f5 kg(@( 3 ) kf(r4-"r3) k$3 ('r 1 0-3, T 2@V 1- 3 -3) do 3  (17)

K4 1 (s 1's 2 's83 s4) a K3 (sI.S2zS 3 ) Kf(s 4 ) Kg(S+5 2+S 3S+S 4 ), (18)

where k3('i°T2,0 3 ) is the kernel of the third-degree section within the fourth-degree
section.

For the canonic form of Fig. 6, the kernel and kernel transform are given by
k42(tr ,tr2.,rSr4 ) = k kg( 3 ) kf(•r2 ) kc(r 1) ka(l-rl-Or3) kb(T-r2'rl-r3) kd(r3-(r2-•r 3 )

ke(r 4 -r,2 - 3 ) dwldo2 do.3 (19)
K 42(a1# 52,83.4) • Ka(S1) Kb(s 2 ) Kc(Si+S 2 ) Kd(S3 ) Ke(S4 ) Kf(s 3 +s4 ) Kg(s 1 +S2 +s3 +S4)

(20)or

k42 (I'rl 2' 3 ,'r 4) k 9kg(w3 ) k2zl(lr1  32-iv3) k2 2 (T3-(r 3 , T"4 -C"3) dr 3  (21)

K4 2 (s 1 S2 9 s3#s4) = K2 1 (S1 0S2 ) K2 2 (s3 aS4 ) Kg(sl+S2 +S3 +s4), (22)
where k2 1 (r19T 2 ) and k2 2 (,r3 'r 4 ) represents the second-degree canonic section within
the fourth-degree canonic section above.

If a given fourth-degree system is characterized by a kernel transform H4 (s 1 S2 S3 PS4 )
which car. be expressed as

N N

H48s'82'83'%) K 4 1 (Sl'S 2 83.84)+ 1 Y K4 2 i(S1 9S2 0s,'s4) (23)i=1 i= 1
for some N, and N2 , then the system can be realized exactly with at most 3(N I+N2multipliers. If the kernel transform cannot be expressed in the form of (23). then it is
impossible to realize the system exactly with a finite number of multipliers.

For higher degree systems we shall have more canonic sections. A fifth-degree sys-tem may be formed as the product of a fourth-degree and a first-degree system, and thefourth-degree system may be obtained in either of the two forms given above, or we may

10



S.l

2.2 5

3.2

(a) Tree for a fifth-degre. system

3.11

2e2ii-iI 5.1 Fig. 8.
3,2 ,Trees showing canonic structures.

3.1 3...*2 S

2.2

3.3

(b) Trese for a sixth-degree system

obtain the fifth-degree system as the product of a third-degree system and a second-

degree system. A sixth-degree system may be obtained as the product of a fifth-

degree system and a first-degree system. a fourth-degree system and a second-degree

system. or a third-degree system and a third-degree system, with all possible forms

for each.

Although this nomenclature of canonic forms rapidly becomes complex as the degree

of the system is increased, we may use the concept of a tree to summarize the process

concisely, and to arrive at an expression for the number of different canonic sections

existing for an n th-degree system. The trees for the fifth-degree and the sixth-degree

cases are shown in Fig. 8.

To form the tree for, say, the fifth-degree system, we proceed from right to left. A

fifth-degree system may be formed from the product of a fourth-degree system and a

first-degree system, or from the product of a third-degree system and a second-degree

system; we need, in moving to the next level of the tree, consider only the fourth-degree.

third-degree, and second-degree systems. The third-degree and second-degree systems

have only one canonic section; hence the tree branch corresponding to this product termi-

nates there. The fourth-degree system must be broken down further, and hence this

branch of the tree continues, spreading out still further, until a level at which only one

canonic section exists is reached.

In



3.1-

.2 --- 61-

3. 1

3,11 
8*'

2.2 -I 5 .1 --

3,2

622
3.1

2.2 hII 5.-2

332

3.1--3.1 -.2

222 -2-

33*3

2* 24 Sol,3 - .. .

30---.

2 2 42-•2

Pig. 9. Tree for an eighth-degree system.
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A complication arises in the tree for the eighth-degree case, Fig. 9. Here we find

a branch corresponding to a product of two fourth-degree systems; at this point we must

expand the tree in both directions until we arrive at branches having only one canonic

section, as shown in Fig. 9.
th

We may now observe that the number of different canonic sections, C(n), for an n -

degree system is obtained from the expression

[n/21

C(n) = C(n-k) C(k). 02 (24)

k= I
C(I) = 1,

where [-] denotes the greatest integer function. For example, the number of canonic

sections for ai = 7 is given by (24) as

C(7) = C(6) C(I) + C(S) C(Z) + C(4) C(3) (25)

From Fig. 8, or repeated use of (24). we have C(6) = 6. C(S) = 3, C(4) = 2, and C(3) =

C(2) = C(1)= I, and hence from Eq. 25, C(7) = 11.

For n = 8, we have

C(8) = C(7) C(I) + C(6) C(2) + C(5) C(3) + C(4) C(4) = 24 (26)

The tree corresponding to n = 8 is shown in Fig. 9.

From the tree we may write the form of the kernel transform of each canonic section

by inspection, using the product rule and cascade rule for system combination given by

George. 6 For example, from the tree for the fifth-degree system (Fig. 8a) we may write

the kernel transforms of each of the three different canonic sections for fifth-degree sys-

tems; for the canonic section corresponding to the uppermost path of the tree, the kernel

transform is written by inspection as

KS(S 1 ,s 2 ,s 2 ,s 4,S 5 ) = K3 (sits,2s 3 ) Kll(s 4 ) K 12 (s5 ) K13 (sI+S2 +S3 +s 4 +s5 ), (27)

where K5 (SSs2 ,S3 ,s 4 ,s 5 ) is the kernel transform of the corresponding fifth-degree

canonic section, K3 (sI,s 2 ,s 3) is the kernel transform of a third-degree canonic section

of (11) and Fig. 3, and KI I(s), K12 (s), and K13 (s) are the kernels of linear systems.

Thus we see that by forming the tree, and following each path in the tree, we may

obtain quickly the form in which we must be able to express the kernel transform of an

n th-degree system in order that the system be realizable exactly by a finite number of

linear systems and multipliers. For higher degree systems the expressions will not be

simple, but we have exhibited a procedure for obtaining them with a minimum of effort.

Hence, given the kernel transform of an n th-degree system, we may test that trans-

form to determine whether or not it is realizable exactly with a finite number of linear

systems and multipliers.
It should be noted that, in any particular case, it is not necessary to perform the test

of a kernel for exact realizability in one step. One proceeds by means of a sequence of

13
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simpler tests from the higher degree side of the tree through the lower degree branches
as far as possible. Following any path completely through the tree indicates that exact
synthesis with linear systems and multipliers is possible; if it is impossible to follow any
path completely through the tree such synthesis is not possible. Even when an exact
synthesis is not found, proceeding as far as possible through the tree reduces the syn-
thesis problem from the synthesis of one higher degree kernel to the synxhesis of sev-
eral lower degree kernels, which constitutes a significant reduction.

2.2 EXAMPLES

The procedures discussed above are illustrated in the following examples.

Example I

Consider the kernel transform

H4 (sI1 s 2,s 3 ,s 4 ) = s4//s(s2s13s4+21s 2 s23 +sIs 2 s4 +slS3 s4 + 2 s3 s 4 +2slS2 +2sls3 +2s2s 3

+5÷ 1 a4+s2s4+s34+2S 1+2 4 2+2 s3+s4+2). (28)

If this kernel is to be realized exactly with a finite number of linear systems and multi-
pliers, we must be able to express it in the form of (23). To determine whether this is
possible, we shall first try to express (28) as

H 4 (sss2 ,s 3 ,s 4 ) a F(s1.s2ps,3) G(s 4 ) H(s I+s 2 +s 3 +s 4 )

or by a similar expression with the variables permuted, which corresponds to one of the
branches in the tree for a fourth-degree system. We note that it is only necessary to
consider the denominator, which we will denote D(sl,s 2 ,s 3 ,s 4 ), since we could, if neces-
sary, take the numerator one term at a time. We set the variables equal to zero three
at a time to obtain

D(0,0,0,s 4 ) = s4 + 2 (29)

D(0,0,s 3 ,0) = 2s3 + 2 (30)

D(0,s 2,0,0) = 2sz + 2 (31)

D(si,0,0,0) = 2s+ 2. (32)

Since Eqs. 29-32 have no common factor other than unity, the only possible H(*) is unity.
Also, the only possible G(s 4 ) is, from (29), G(s4) = (s4+2). To see if this is indeed a
factor, we divide D(sls 2 ,s 3 ,s 4 ) by (s 4 +2) to find that

D(SMlS2,S3,4) V (s4 +2)(s 1s2 s 3 +SIs 2 +sIs 3+S2s 3 +s I+s2+s3+1). (33)

Now, with the helo of Eqs. 30-32, we recognize the second factor in (33) as (sl+M)0s2+1)
(s 3+1), and thus have

H4l(sip ,2Pa3,4 O 4 .4 (34)
(s 1(+1)(S2+1)(s3+1)(3

14



Hence this kernel can be synthesized as shown in Fig. 10.

Example 2

Consider the kernel transform given by

H(a Is.3.) IS (a 82)i/(8'2sa 8S+ a2 a8a2 +Sa2 a2 9+aa2 a2
42 2 2 2 32

+ 68ss 3 * 2 18 263564 + 7931 28384 a +s1263a8

2 3 4 2 3 22 3 2 23
+ 2612 33 + 68122838s + 7s283 2 + 1ss2s 2s8a34s

122,2 2 2 2 12 3 12 2213

1 4 2 14 2 3 4 1 24 1342 2 22 2 2+ ss* ••s2as 488 +88 s +3 4 2ss~s~s

1234 1 234 1234 1 234
2 22 28 2

12811283 * 63182642 4 1081 2s3 6s3s 2 s 4

a 2 2
23 124 1 S23 4 23S4

2 2 4 2+ 81s3s 8 + 586a3a + 235 5s283s

22 422 22 22
+ s a3 + 28s18 + 28283 + 82s8 + 60818283

*36aslss +56sls~s +3sss 8i2

12 1 1 42 2 2 2* ~ 208 1281s% + 108283 * 6s~s%

+ 16s 8 62 8sis + 10s s + 58822 + 6s828s

1 3 1 4 2 3 2 4 34

+ 6S3s 8 + 48S2 + 80883 + 48•8•

3~ ~ ~ 2
+ 506283 + 308284 + 42s3 8÷ 16s 2 + 8S2

2 3 24 34 1 2
+ 12S 2 682 + 64s + 40s + 60s + 36s + 48)

3 4 1 2 3 4

(35)

Again, we try to put the denominator D(slS 2s 3 ,,0 4 ) into a form corresponding to the
3 I branch of the fourth-degree tree. We find first

D(0,0,0,s 4 ) = 36s4 + 48 = 12(3s4+4) (36)

D(0,0,s 3 ,0) = 12s2 + 60s 3 + 48 a 12(s3+4)(s3+1) (37)

D(0,s 2 ,0,0) = 8a2 + 40s + 48 : 8(s2+3)(s2+2) (38)202 22 2

D(s,0,0,0) = 16s 2 + 64s + 48 = 16(sl+3)(s+0) (39)11 1 1 1

Examination of Eqs. 36-39 shows that no common factor other than 4 exists. Hence no

15



s+2

Fig. 10. System with the kernel of Example 1.

factor of the form H(sl+S2 +s 3 +S4 ) can exist other than H(.) = 4. We next attempt to

find a factor that is a function of only one of the variables SS2,S3,S4; however, division

of D(sls 2 ,S 3 ,s 4 ) by each of (36)-(39) shows that such a factor cannot exist. We cannot

follow the 3"1 branch of the tree.

We then attempt to follow the 2.2 branch, or to express D(slS2,S30,s4 ) as

D(ss 2ls,, 3 ,s 4 ) = H 2 (sts, 2 ) K2 (s 3 ,s 4 ) (40)

or by a similar expression with si, sz, S3 , 84 permuted; we have already found that no

nontrivial factor of the form H(Sl+S2+S3 +s 4 ) can be present. Hence we write

D(0.0,s 3 ,s 4 ) = 6(s2s4+s3s4+2 s3+s4+7s 3 s4 +10s 3 +6s 4 +8). (41)

If a factor K2 (s3 ,s 4 ) exists, it must be contained in (41). Division of D(sS 2 ,S 3 ,s 4 ) by

(41) is successful, yielding a second factor, and we have reduced (35) to

sI +s2

H4 (sits2 #s 3 Ps4 ) = 2 2 2 6 2 2

81s2 + SIs2 + 2s1 + s2 + 6sIs2 + 8sI + 8s2 + 6

S 2 S+ s42 + 2s 2 + S4 + 2 s3S4+ 10S + 6s +42)

(3 4 8384 3+84+7384+03 46

We have now reduced the problem to synthesis of two second-degree systems. Note

that at this point we are not yet sure whether or not either of these second-degree sys-

tems is exactly realizable with a finite number of linear systems and multipliers. We

may, however, examine each second-degree system separately, using the techniques

of Schetzen, or continuing with the methods used above. We find that we may realize

each of them, with the system whose kernel transform is given by (35) then being syn-

thesized as shown in Fig. 11.

16
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Example 3

Consider the second-degree kernel transform given by

s s (i-s 2 -e'2) - s2(l-Sl-e2)
H 2(S 1 S2 )a I & ( 2 ( ' (43)

8lS2(2-21)

Denote the numerator of this expression N(s 1 sS2 ) and the denominator D(s 1 ,s 2), We

observe that the kernel transform cannot be put in the form (9) unless N(s1, s2), as well

X "

*÷2 804

Fig. II. Realization of the kernel of Example 2.

as D(sI,s 2 ), contains the factor (s2 -s 1 ). Setting sI = s2 = s, we find that N(s,s) = 0. We

next attempt to factor (s.-s1) out of N(sI, s2). In order to divide out this factor, how-

ever, we must expand the exponential terms in their Taylor's series. Before doing this,

it is convenient to rewrite N(slsS2 ) as

2 2 1 .2 2 2 2 1 -Sl

-s2 -s2+sis2 - sisa e (44)

-sI -82

Here we have added and subtracted sl I -s2 e and lS 2 e . We may then write N(s 1 ,s 2 )

as

N(slps 2 ) = s S2 (s 2 -s)I- s 2 (s 2 -s 1 )(I-e-s )- 1(s2-s1)(1-e-82) + iS2(e-S -e-S2). (45)

We note that (s2 -s 1) is a factor of each of the first three terms; in addition the last

term is zero for s, = s2, but (s2-s1) cannot be factored out to leave a closed-form

expresoion.
We will treat each term separately, writing H2 (slps 2) as

17



We may now focus attention on the last term; of this term, consider the factor, which

we denote F(s fts2)

-uI -e 2

s2 * 1 2

2 -2)= 2 - (46

1225 s

42 2 2 3 4

We+aay now + I st t ois tr c tfo w

F• o) 1 2T! r + 8i 4! 2..

Nowe although we cannot write this in closed form, and hence cannot realize H(sFs2)

exactly with a finite number of linear systems and multipliers, we can approximate

H 2 (sits2) with a kernel that is exactly realizable with linear systems and multipliers

as closely as we wish by taking as many terms as needed of (47). If we are only inter-

ested in the low-frequency behavior of the kernel, only a few terms may suffice. Thus
we cannot realize this kernel exactly, but applying the tests we have developed to deter-

mine whether or not the kernel was exactly realizable with a finite number of linear sys-

tems and multipliers led in this case to an approximation procedure that gives very good

approximations for low frequencies.

The following points should be observed from the preceding examples and discussion.

First, it is clear that the examination of a kernel to determine if it is exactly realizable

may be a lengthy and tedious process. By the use of a tree the labor required is sys-

tematized, however. In addition it should be noted that algebraic computation can always

be reduced to a first-degree problem. enabling one to use the conventional factorization

techniques, although it may be convenient, as it was in Example 3, to do some simpli-

fication at a higher level than a one-dimensional problem. Although tedious, the pro-

cedure is systematic and feasible. resulting either in a realization of the kernel. the

realization of as much of the kernel as possible, or the assurance that nothing can be

done to realize the kernel exactly with a finite number of linear systems and multipliers.

We may, in the examination of a kernel, find a good approximation even when an exact

synthesis is not possible; this is a fortuitous by-product in some cases.

is

m....2......12.1.2 12 12 1+J.l.



K Y(t)

Fig. 12. Nonlinear feedback system.

2.3 COMMENTS ON FEEDBACK STRUCTURES

In Fig. 12 a system characterized by a nonlinear operator H is connected in a feed-

back configuration. The input time function is x(t) and the output time function is y(t);

the function on which H operates is denoted e(t) = x(t) + y(t). The relation between x(t)

and y(t) is given by an operator G. When nonlinear systems are connected in feedback

configurations, as for example in Fig. 12, the input-output relationship of the resulting

structure can sometimes be approximated by a finite number of terms of a Volterra

series expression; it can never be represented exactly by a finite number of terms. That

is. even if the nonlinear operator H can be characterized by the second-degree Volterra
kernel alone, so that y(t) is a second-degree functional of e(t), it is still not possible to

represent y(t) as a finite-term Volterra functional of x(t).

Thus if we consider the kernels of a family one at a time, any exact synthesis must
rule out feedback configurations; however, some discussion of feedback structures is
pertinent. Zames 2 1 has tabulated the kernel transforms of the kernels of the Volterra

representation of the operator G of the feedback structure in terms of the transforms
of the Volterra kernels of the nonlinear operator H. The first few of these is given in

Table I for convenience. Note that the relationships are formal in nature; if the appro-

priate Volterra expressions exist, then the relationships hold, but special care must be

taken to insure that the Volterra series for the feedback structure actually exists, that

is, converges and represents the feedback structure for inputs of interest. We discuss

only the formal relationships here, referring to Zames for a discussion of the conver-
gence problem. The expressions in Table I differ somewhat from those given by Zames.

since we have used positive feedback and Laplace transforms rather than negative feed-
back and Fourier transforms.

From the expressions of Table 1 we make the following observations. First, sup-

pose that the nonlinear system within the loop, that is, the open-loop relationship, is
realizable exactly by a finite number of linear systems and multipliers. Then, we see
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Table 1. Kernel transforms for the feedback structure of Fig. 12.

6$(sl6s2's) )3.lats,3

Hi(

S1•+

G 3 3(e51 2,,) +

0(H 3 .. 1 *. 2..3 ) 2 H42(u1082+'3 )H2(82 6853))
I-HI(s 2 + 3 )

that each of the kernels of the closed-loop system is also exactly realizable with a finite
number of linear systems and multipliers. Second, given a finite family of kernels,
suppose that we have found a realization for each of the kernels in terms of linear sys-
tems and multipliers; if the family of kernels can be approximately realized by a feed-
back structure, then this possibility should be suggested by the repetitive nature of the
structure for each of the kernels.
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III. SAMPLING IN NONLINEAR SYSTEMS

Digital operations have become recognized as extremely powerful tools in modern

control and communication systems. In order to study the possibility of using a digital

computer effectively in the study of a nonlinear system we must first understand the
effects of sampling in nonlinear systems. We shall now consider nonlinear systems

representable by a single term of a Volterra series, and examine in detail the effects

of sampling operations at the input and at the output.

3.1 IMPULSES AND NONLINEAR NO-MEMORY OPERATIONS

In the system shown in Fig. 13, the nonlinear system is characterized by the kernel
hn (r ,..., rn), x(t) is the input, x (t) is the sampled input, y(t) is the output, and y *(t)

x(t) / xh(t) hn(ils.., "r2) y(•t) y*(t)

Ti T0

Fig. 13. Nonlinear system with sampled input and output.

is the sampled output. The input and output samplers operate with sampling intervals
Ti and T0 , respectively.

The input-output relation for the nonlinear system is

y(t) = S ... S. hn(rI ...... n) x*(t rl) ... x*(t--n) d r. . drn. (48)

The kernels hn(rI, ... , .n) and the sampled inputs x *(t) that are permissible deserve

close attention. Consider, in this connection, the situation in which a unit impulse is
applied to a squarer. Both the squarer and the impulse are ideal models of physical
situations. Both are useful models, but together they constitute an incompatible situation.

Regardless of how we represent the impulse as the limiting behavior of a sequence

of pulses, and even though we do not look at the limit until we have formed a sequence

of output pulses that are the squares of the input pulses, the response of a squarer to an
impulse is infinite, not only in amplitude, but also in area.

The difficulty here is in the nature of the models. The squarer places emphasis on

the amplitude of its input; no other feature of the input is considered. The impulse,

however, places emphasis on the area or weight of a signal. Nonimpulsive inputs and
no-memory systems such as squarers are compatible, impulses and linear systems are

compatible, but impulses and nonlinear no-memory systems are simply not compatible.
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A convenient model for the sampling operation is the "impulse-train modulator." The

output of the sampler is taken to be a sequence of impulses at the sampling times, with

the areas of the impulses equal to the amplitudes of the input at the sampling instants.

Using this model, we have

X M*t x(kT) uo0(t-kT). (49)

Si'; k= _o

We note that in order for (49) to be meaningful we must exclude impulses from the

input x(t); we may permit jump discontinuities in x(t).

But, if this impulsive input x (t) is to be presented to a nonlinear system, as in

Fig. 13, we must restrict the kernel hn(r V,... , rn) of the system so that nonlinear

no-memory operations on the sampled input are excluded. This is conveniently accom-

plished by requiring that hn{(-. ..... Tn) have no impulsive components.

A common artifice is to require that some type of hold circuit follow the sampler, as

In Fig. 14, whenever nonlinear systems are considered. The hold circuit may assume

any of several forms,2 2 the cardinal hold, zero-order hold, first-order hold, exponential

hold, and others.

X(t) x*(t) x )

HOLD -

T

Fig. 14. Sampler with hold.

h'r...r) I yt
X*(t) YM

_-- ," HOLD -hn (T . ,,0 0 Tn) " •

__________________________________ I

Fig. 15. Nonlinear system with hold.

We mnay think of the hold circuit in cascade with a nonlinear system, as in Fig. 15,

as a new nonlinear system. As long as the hold is linear, the cascade combination may

still be represented by an nth-degree kernel; moreover, the kernel of the combination

will not contain impulsive components.

When the nonlinear system is characterized by a kernel that has no impulsive

22



u;xt x()t) ) y*(t)
•i , • --- HOLD X- L" .

(a)

X(t) NLN" y(t) y*(t)

T

(b)

Fig. 16. Models for sampling with nonlinear no-memory systems.

components, that is, when hn(TI,..., rn) Is not impulsive, the hold circuit is not essen-

tial to a compatible physical model.

A nonlinear no-memory operation in a situation in which we wish to introduce

sampling may be modeled as shown in Fig. 16a or 16b. In either case, y *(t) is the same,

provided that the hold circuit repeats the amplitude of x(t) at the sampling instants; the

model of Fig. 16b simply avoids sampling before the nonlinear no-memory operation.

3.2 SECOND-DEGREE SYSTEMS WITH SAMPLED INPUTS

Consider the system shown in Fig. 17. The system N1 is a second-degree system
with the kernel h2 (- 1 , 2). We exclude kernels having impulsive components. The input

x(t) is sampled by an ideal sampler, so that x *(t) is a sequence of impulses of area x(kT)

occurring every T seconds. We assume that s(t) has no impulsive components. The

output y(t) is not sampled.

If the output of the sampler is a single-unit impulse, the system output y(t)

is given by

N-11

x(t) x*(t) h2(0 19 T2 ) (yt)

T

Fig. 17. Second-degree system with sampled input.
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y(t) a h 2 t, t).50

Hence the response to a unit impulse is completely determined by the values of the ker-

nel for which the arguments %1 and -r are equal; that is, by the values over the line

passing through the origin at 45" to each of the axes, as shown in Fig. 18. As indicated,

T2

Fig. 18.

Portion of the (T 1 , T2 )-plane that

it is significant in the response to
a single impulse.

,T11

however, the scale along the rI and the -2 axes is given by the time scale; hence the

scale along the 45" line Is %r4 times the time scale. Thus, although the impulse

response is h2 (t, t), if we wish to interpret the section of the surface over the 45" line as

the output corresponding to the impulsive input, then we must scale the abscissa values

along this line by the factor 1/4J. This is accomplished conveniently by projecting into

either the -r = 0 plane or the (r 2 =0)-plane. To find the response to a unit impulse, then,

we look in the (rl='r2 )-plane and project.

Now suppose that the sampled input is a sequence of unit impulses:

0

k=0

Then the corresponding output is found to be

0 0

y(t) = I h2 (t-jT, t-kT). (52)

k=0 j=0

Again, the response depends only on certain values of the kernel, and not on the entire

surface of the kernel. Observe that in each term of the double sum, the variation in each

of the two variables is the same; hence each term is given by the values of the kernel

over a line parallel to the -, = 'r line and intersecting the rI or r2 axis at some

multiple of T units, as indicated in Fig. 19.

Insight can be gained by examining the output y(t) in (52), term by term. The term
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"for k - j a 0 is simply h2 (t, t), the response to a unit impulse discussed above. The

terms for k = n are given by h2 (t-nT, t-nT) and hence are the same as the k = J = 0

term, except shifted nT units in time. The situation is clearer if we rewrite (52) as

y(t) h2 (t-nT, t-nT) + I h 2 (t-jT, t-kT) + h h2 (t-JT, t-kT). (53)

n=0 k>jý,0 04;k<j

At t = 0, when the first impulse is applied, the output begins just as if the'system

were a linear system with the unit impulse response h2 (t, t0; that is,

y(t) = h2 (t. t) 0 1 t < T. (54)

Now at t = T. the second impulse is applied and the output becomes

y(t) = h2 (t,t) + h2 (t-T,t-T) + h2 (t, t-T) + h 2 (t-T,t), T d t < 2T. (55)

If we were dealing with the linear system characterized by h2 (t, t), we would get the first

two of these terms. The nonlinear character of the system is now evident; however, we

12

'4T Fig. 19.

3T Portion of the (,r, T2)-plane that

is significant in the response to a

2T sequence of impulses.

T

T 2T 3T 7 T 7 . .

have in addition the last two terms. At time t = 2T, all of these terms will start over,

just as h2 (t-T, t-T) appeared at t = T, and we shall also pick up two more terms, deter-

mined by the next two 45" line sections of the kernel of the system. At t = 3T we shall

again find new components in the output, and so on.

Eventually, the output will reach a steady-state response. This steady-state response

will be the response to an input
o0

X•(t) = uo(t-kT). (56)
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It is interesting to note that, for the Inputs considered, we can think of the output as
having been formed by applying the same input to a linear system constructed as follows:

Project all the 45 line sections of h (Ur Ir into the -r = '2 plane, add all the curves,

and project the sum into the -r = 0 plane. The resulting function is the desire.d impulse

response

h(t) = h2 (t, t) + [h 2 (t-nT, t)+h 2 (t, t-nT)]. (57)

k=l

The response of this linear system and the response of the second-degree system

with the kernel h2 (Ur, r2 ) will be identical for inputs (52) and (56). Note, however, that

this is a property associated with these specific inputs. If we change the inputs, that is,

change the weights of the impulses in the input sequence, the output of the linear system
and the output of the second-degree system will no longer be identical. We would need

to change the impulse response of (57) to follow the change in the input in order to main-

tain identical outputs. Thus we abstract from the kernel of the nonlinear system a linear

system relating a particular input-output pair.

3.3 HIGHER DEGREE SYSTEMS WITH SAMPLED INPUTS

The response of higher degree systems to sampled inputs retains most of the proper-

ties described above for second-degree systems. A single-unit impulse applied to a

T3

t

v Tt

"11

Fig. 2 0. Portion of r1 , 2 ,T3 space that is significant in
determining the response to an impulse.
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third-degree system characterized by the kernel h3 (-r, 02, -3 ) yields an output h 3 (t, t, t).

In Fig. 2U the portion of the domain of the kernel on which the impulse response depends

in shown. The response is completely determined by the values of the kernel for
I, I29 T 3 along the line through the origin at 450 to each of the axes. The scale along
this line is 41 times the time scale along each of the axes.

For an nth-degree system a similar situation applies. The scale factor in the

Sth-degree case is %Mn, although the graphical interpretation is not possible.

The response of the third-degree system to a sequence of impulses x (t) is given by
o0 CO Go

y(t) x I I I h 3 (t-iT, t-jT. t-kT). (58)

i=0 J=O k=O

This sum can be rearranged to be

Go

y(t) I h 3 (t-nT. t-nT, t-nT)

n=0

+ 3 1 h 3 (t-nT, t-nT, t- (n+k) T)

n=O k=!

go0 0

+ 3 1 h 3 (t-nT, t-(n+k) T, t-(n+k) T)

n=0 k=l
WO 00

+6 1 1 1 h3 (t-nT, t-(n+k) T, t-(n+j+k) T), (59)

n=0 k=l j=l

where we have grouped together all terms in which all three arguments are equal, in

which two of the arguments are equal, and in which no two of the arguments are equal,

and have assumed a symmetric kernel.
The response in this case is thus completely determined by the sections of the kernel

for which the arguments lie on lines at 45" to each of the axes, intersecting the planes
TI = 0, r2=0, and 3 = 0 in a uniformly spaced grid T units on a side, over the positive

quadrants of the planes.
For 0 4 t < T, the response is h3 (t, t, t); for the next interval we have

y(t) = h3 (t, t, t) + h3 (t-T, t-T, t-T) + 3h3 (t, t, t-T) + 3h3 (t, t-T, t-T), (60)

and again the nonlinearity becomes evident on application of the second impulse of the

sequence. In subsequent intervals more new components will appear in the output. As
in the second-degree case, we can abstract from the kernel a linear system relating this

specific input-output pair. The impulse response of this linear system is given by
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h(t) h3 (t. t. t) + 1 h 3 (t. t.t-kT) + 3 h3 (t, t-kT, t-kT)

k=1 k=7

+6 h 3 (t,t-kTt-Q+k)T). (611

k=l J=l

In the general nth-degree case, the response to x*(t) is

S~y(t)- . hn(t-ilT,.,.,t-inT). (62)

Expressions of the form of (61) for the nth-degree case are extremely complicated. It

is clear, however, that only certain slices of the kernel are significant in determining

04e response to a sequence of impulses; for sampled inputs, only the "4 5 4 line sections"

are important. Thus for sampled inputs, kernels that agree along these lines are com-

L,,etely equivalent.

3.4 INPUT AND OUTPUT SAMPLED

Returning to the situation shown in Fig. 13, consider the relation between the

sampled output y *(t) and the sampled input x *(t). The sampled output is a sequence of
impulses of areas

Co o

y(pTO) = I ... I x(kITi) ... x(knTi) hn(pTo-kITi, .... pTo-knTi), (63)

kn=-o0 kI ='W

where x(kT i ),... ,X(knTi) are the input sample values.

We have observed that only the 45° line sections of the kernel surface are important
when the input to the system is sampled; from (63) we see that only isolated points on

the surface of the kernel are important in determining the sampled output. The remain-
der of the kernel has no effect on the sampled output.

Sampling &.t the input restricts attention to the 45 * lines; sampling at the output fur-
ther restricts attention to the points along the 45° lines'at intervals of T units.

O

28



IV. SIMULATION OF CONTINUOUS SYSTEMS BY SAMPLED SYSTEMS

It is often convenient to replace a continuous system by a sampled system; for

example, when a digital simulation of a continuous system is to be used. We can take

one of two approaches: either we try to find a sampled-data system that performs

exactly the same operation as the continuous system or we try to find a sampled -data

system that approximates the operation of the continuous system, with the approximation
becon,*ng better and better as the sampling interval is made shorter and shorter. The

N

t) H y(t)

Fig. 21. Nonlinear system.

first approach is useful when the input and the system are bandlimited. If the system is

not bandlimited, then we rely on the second approach. We shall discuss the approximation
of the convolution integral by a sum approaching the integral as the sampling interval is
decreased. Then we shall discuss the bandlimited situation, including the implications of

bandlimiting in nonlinear systems, as well as modeling and simulation of these systems.

4.1 APPROXIMATION OF THE CONVOLUTION INTEGRAL BY A SUM

We consider the approximation of a multidimensional convolution integral by a sum-
mation approaching the convolution integral in the limit of small sampling intervals. In
Fig. 21 a nonlinear system H with input x(t) and output y(t) is shown; we shall assume

that H can be characterized by a single kernel hn(-r, ... , "n) and that hn(TI ,...I Tn) and

x(t) have no impulsive components. We wish to sample the input and the output and find
a sampled-data system that will approximate the continuous system as the sampling inter-
val, T, is decreased.

Consider first the linear case, n = 1. The input-output relation is then given by

y(t) = ShI(rI) x(t-T1 ) dr 1. (64)

There are, of course, many ways to approximate this integral by a sum. We shall dis-
cuss a method closely related to and easily modeled by a sampled-data system and sub-
sequently extend this method of approximation and model to higher degree systems.

We construct an approximation to hl(rl) as follows. Partition the abscissa, '-r, into
uniform intervals of length T, with the origin falling at the center of an interval, as shown
in Fig. 22. Construct a stepwise approximation to h,(-r,), taking as the amplitude of each
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? 3 rT 2V3? 84?_ ST1
T5? 7T 9T

Fig. 22. Approximation of first-degree kernel.

segment the amplitude of h,(r 1 ) at the midpoint of the interval. Now consider the step-

wise approximation to be a sequence of pulses of width T and height hl(kT). Replace

each pulse by an impulse of the same area, occurring at the midpoint of the interval.

Then we obtain an approximation

hl(r") = hl(kT) uo(01 -kT). (65)

Substituting (65) in (64) and observing the output y(t) at t = pTo yields

y(pT0 ) h I (kT) x(pTo-kT) T. (66)

As T -0 and To -0, we make the formal replacements

T -- d

kT "- 1

pTo - t

and obtain the convolution integral (64). We can represent (66) as shown in Fig. 23 with

n = 1. The amplifier with gain T is necessary in order that the sampled system approach

the continuous system as T is decreased.

For the second-degree case, n = 2, the input-output relation of the continuous system

is

y(t) = 55 h 2 (.rI. 2 ) x(t- 1"l) x(t-r 2 ) d? 1 d, 2 " (67)

To find an approximating sum for this integral we find an approximation to h2 (TIr, ).

Partition both the -r and the r2 axes as described above in the linear case; forming the

Cartesian product of these partitions yields a uniform partition of the •r1i ?2 plane. Form
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Fig. 23. Approximation of a continuous system.

a stepwise approximation to h 2 (,r,T 2 ), taking as the amplitude of each segment the

amplitude h2 (klT, k2 T) at the midpoint of each two-dimensional interval. Consider this

approximation to be a two-dimensional sequence of pulses and replace each pulse with

an impulse of the same area occurring at the midpoint to obtain for the two-dimensional

kernel

h2 (, 13 2 )= h2 (klT,k2 T) uo(rl-klT) uo(-r-k 2 T) T . (68)

k2 =-00 kI=-O0

Substitution of (68) in (67) and observation of the output at t = pTo yields

y(pTO) = h?(klT,k2 T) x(pTo-kT) x(pTo-k 2 T) T" T. (69)

k =-2o k1 =-o

As T -- 0 and To .V0, we make the formal identifications

T -dr 1  T -dr 2

kIT -r k 2 T -r 2

pTo-. t

to obtain the two-dimensional convolution integral (67). We can represent (69) as shown
2.in Fig. 23 with n = 2. The amplifier, in this case having gain T , is, as in the linear

case, necessary in order to secure the desired limiting behavior.

For the nth -degree case, the approximation above extends readily to give for

hn( " ( n)

hnl,. , n) h n. h(k IT.... ,k nT) uol ,r -k IT) .. Uol-rn-k nT)Tn

k=-on k I=-

(70)

and hence for the output y(pTo) in the nth-degree case
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y(pT o ) Z .. • hn(k T,...,knl') x(pT0 -kIT) ... x(pTo-knT) Tn. (71)

kna -40 kl=-oo

which is represented in block diagram form as a sampled-data system in Fig. 23.
Observing the output at t = pT0 , we find that for these summations to have the desired

behavior for small T, it is necessary that the stepwise approximation to the kernel be
sufficiently accurate, and that the replacement of the pulses by impulses does not intro-
duce too great an error. Also, To must be small enough so that we are able to obtain
from the samples y(pT0 ) a good approximation to y(t).

An alternative development of these results can be obtained by writing (67), or the
corresponding equation for linear or higher degree systems, in the equivalent form

y(t) = $ h2 (t-r'1 ,t--r 2 ) x(r ) x(r.2 ) d-rdr 2 , (72)

which differs from (67) only in a simple change of variables. We may now approximate
x(t) in exactly the manner described above for the linear or first-degree kernel, (65) and
Fig. 22, to obtain

00

x(t) = I Tx(t) Uo(t-kT). (73)
k=-o

Substituting (73) in (72) yields (74). In terms of Fig. 23 this amounts ,to associating
the sampler with the input rather than with the system. We arrive at the same type of
approximations on the input as described above for the kernel

y(pTo) = x(k T) x(k2 T) h2 (pTo-klT,pTo-k2 T) T 2. (74)
k2=-0 k =-0

A change of index in (74) yields (69) again.
From the engineer's point of view, the length of the sampling interval necessary to

achieve an adequate approximation constitutes a compromise between conflicting require-
ments. Shortening the sampling interval requires that more computations be carried out
to obtain each sample of the output, and all of the computations will introduce errors
unavoidably. The choice of the sampling interval is then a compromise between approxi-
mation error and computation error.

4.2 BANDLIMITED SYSTEMS

The concept of bandlimiting is somewhat more complicated in nonlinear than in linear
systems; we shall define bandlimiting in linear systems in such a way that the cor.!epts
involved will carry over to nonlinear systems.
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Fig. 24. Nonlinear system with bandlimiting at the input and output.

We say that a linear system is bandlimited if the Fourier transform of the impulse

response of the system has a nonzero magnitude only in a certain band or certain bands

of frequencies; this definition can be interpreted in terms of properties of the system

as observed at the input and the output of the system. Similarly, we may say that a sys-

tem characterized as an n th-degree kernel is bandlimited if the multidimensional Fourier

transform of the kernel of the system has a nonzero magnitude only in a certain region

of the multidimensional domain of definition of the kernel. This definition is adequate,

but it is not quite as easily interpreted as the corresponding definition for linear systems.

To aid in interpretation of bandlimiting in nonlinear systems, we shall adopt another
definition that is equivalent to the one above, both for linear and nonlinear systems, and

which has obvious interpretation in both cases.
In this connection, consider the situation shown in Fig. 24. The nonlinear system H

is cascaded after a linear ideal bandlimiting filter LI and before a linear ideal band-
limiting filter L2 . The filters L, and L2 do not necessarily have the same passbands.

We shall denote the transfer functions of these filters Lj(wa) and L2 (w). We assume that

the nonlinear system H can be characterized by an n th-degree kernel hn(T I1".. . T in)d and

examine the effect of the ideal filters. If we think of the cascade combination of the fil-

ters L and L, with H as a new nonlinear system, this new or over-all system will still
be characterized by an nth-degree kernel, which we denote gn(Tit... ,'nn). The multi-

dimensional Fourier transform of this kernel is

Gn(w, ,... ,wn) = LI(w•) ... Ll(wn) Hn(wi wl. ,•n) LZ(w•+. . .+w.n), (75)

where Hn(w ,... wan) is the transform of the kernel hn( ,..., Tn).
For convenience, assume n = 2, and we may use the sketches in Fig. 25, in which

we assume that L1 and L2 are lowpass, with bandwidths WI and W2 , respectively. The
presence of L then forces G2(wi1 ,W2 ) to be nonzero only within the region shown in

Fig. 25a, while the presence of L 2 limits G2(l ,I w.) to the region shown in Fig. 25b.
We then define a system as bandlimited from the input if precascading an ideal band-

limiting filter has no effect on the over-all performance, and bandlimited at the output

if postcascading an ideal bandlimiting filter has no effect on the over-all performance.
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(a) Bandlimiter at the input.

V2

.W W
-W 2

(b) Bandlimiter at the output.

Fig. 25. Effects of cascading lowpass filters with a second-degree system.
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Since linear time-invariant systems commute, a linear system that is bandlimited

at the input is also bandlimited at the output; there is no difference in the two types of

bandlimiting in this case. For nonlinear systems, however, the order of cascading

cannot, in general, be interchanged without a corresponding change in over-all perform-

ance or character of the system, and it is then necessary to make the above-mentioned

distinction between bandlimiting at the input and at the output. Consider again the

second-degree case, with lowpass limiting, for which Fig. 26 applies. In Fig. 26, solid

lines indicate the regions appropriate to input bandlimiting to (-WW) or to (-2W, 2W);

w2
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/ 2W
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-V / ...

/ /
-V /•
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broke lie inict th rein aprpit 0otu adlmt o(-,W rt
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- V
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at the input without changing the over-all system; (ii) if precascading a filter with pass-
band (-W,W) has no effect on over-all perfornlaiice, theni neither will postcascadlng a
lowpass filter with passband (-2W, 2W).

These properties clearly generalize to the nth -degree case and to bandpass, as well
as lowpass, filtering. Thus, if a system is characterized by an nth-degrf-e kernel, we
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have the following situations: (i) if the system is bandlimited at the output, then it is

bandlimited at the input also, and with at most the same bandwidth; (ii) if the system is

bandlimited at the input, then it is bandlimited at the output also, but with at most n times

the input bandwidth.

The highest frequency present in the output is at most n times the highest frequency

present in the input, where n is the degree of the system. With reference to Fig. 24,

if L. does not affect the output of the system, then H and L. commute.

a. Delay-Line Models for Bandlimited Systems

F'or nonlinear systems that are bandlimited at the input, we may take advantage of

the special properties of systems with sampled inputs which were developed in

x(t) X*( X(t (t)
1 (-Ve÷W) h2(01612)

Fig. 27. Bandlimited system with bandlimited input.

Section I1. Specifically, we may develop delay-line models for these systems, making

use of the fact that the output for a sampled input depends only on the values of the ker-

nels along certain lines in the domain of the kernels.

Consider the situation shown in Fig. 27. The nonlinear system is of second degree,
that is, it is assumed to be characterized by the kernel h 2(rI, -2 ) alone, and we assume

that the system is bandlimited at the input to (-W, W). Now we consider the precascading

of an ideal sampler and an ideal lowpass filter with passband (-W,W), as shown, so that

the lowpass filter has no effect on the nonlinear system. For inputs x(t) that are also

bandlimited to (-W, W), the cascade combination of the ideal sampler operating with the

sampling interval T = 1/2W and the lowpass filter with bandwidth W has no net effect.

Thus, under these conditions, it is immaterial whether we present to the system the

continuous input x(t) or the sampled input x *(t).
In Section III we found that the output corresponding to the sampled input is given by

y(t) x(kIT) x(k2 T) h 2 (t-klT, t-k 2T), (76)
k2 =-0o k1 =-cO

where x(t) is the input, y(t) the output, h 2 (r1", -r2 ) the kernel of the system, and T the

sampling interval of the input sampler.

Now let us substitute for the continuous system with the kernel h2 (TIr 2 ), which we

assume to be symmetrical, a system with the impulsive kernel
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hl(,rlT,) a h 2 (T Ir) uI(T I --T2 )+ 2 h 2(rI-kT, r 1) uo(rI-kT-T2 ), (77)

km 1

and present the continuous input x(t) to this new system. In terms of Fig. 27, this is

equivalent to ignoring the filter L1 and associating the sampler with the system rather

than with the input. The output y(t) is still given by (76).

The kernel of (77) can now be realized by means of the delay-line model of Fig. 28,

in which the linear systems have impulse responses given by

kl(t) = h 2(t~t)

k2 (t) = 2h 2(t-T,t)
(78)

kN(t) = 2h 2 (t-(N-1)Tot),

0~t T 2T Tapped Delay Ups, (N-1)T

+

tt

y(lt)

Fig. 28. Delay-line model for second-degree bandlimited system.
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and we assume that h2(,:l, 2) is zero outside the region shown in Fig. 29.
Note that we have apsumed that the kernel is exactly bandlimited and essentially time-

limited to the region of Fig. 29. It is impossible for the kernel to be both exactly time-
limited and exactly bandlimited. We may also apply the results above to kernels that are
essentially bandlimited to the prescribed band and which are time-limited. Practically,
we shall be forced to deal with kernels that are both essentially bandlimited to the
prescribed band and essentially time-limited to the prescribed region of the ' T2 plane,
in that almost all of the energy of the kernel lies within these regions.

Hence for a second-degree system that is essentially bandlimited at the input and
time-limited to the region shown in Fig. 29, we have for essentially bandlimited inputs
the realization of Fig. 28.

Delay-line models for higher-degree bandlimited systems can be developed similarly
to this model for second-degree systems. The complexity increases very rapidly with

t 2

h2 (TlTT 2 ) ' 0 /

//

2?
? 0

T 2T (N-I)T 1

Fig. 29. Domain of the kernel of the delay-line model for a bandlimited
second-degree system.
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the degree of the system, however. For a given number of taps on the d&?lay line, say

N, the second-degree model requires N linear systems. The third-degree system, as

can be seen from Eq. 59, would require that we form the product of the input with the

square of the signal at each of the taps of the delay line, the product of the square of the

irnput with each of the tap signals, and the product of the input with the input delayed by

k units with the input delayed by j units for k = 1, ... , N - 1 and j = k, ... , N; thus the
N-I

number of linear systems needed in this case is 2(N-1) + Zi= (N-i) or, on simplification,

l/2(N+2)(N-1). Thus the complexity grows roughly exponentially with the degree of the

system for a given number of taps on the delay line.

b. Digital Simulation of Bandlimited Systems

In order to simulate a system on a digital computer, we must sample both the input

and the output time functions. If the input is bandlimited and if the system is bandlimited

at the input and output, then the situation shown in Fig. 30 is appropriate. We assume

that H is bandlimited at the imput to (-WiWi) and at the output to (-Wo,Wo), and the

input x(t) is also band] imited to (-Wi,Wi). The output y(t) is then bandlimited to (-WoW 0 ).

We note from the discussion above that the output has a bandwidth of at most W0 = nWi,

where n is assumed to be the degree of the system.

Now, since we assume that H is bandlimited at the input and output, we may omit
L, and L 2 o in Fig. 30 without changing anything. We then simulate H by operating on

x*(t) to obtain y (t), and passing y (t) through L 2 . to reconstruct the continuous output

y(t). The computation that must be performed is

00 go

y(pTo) = I ... I x(kI T) ... x(knTi) hn(pTo0-ki T,...,pTo-knTi) (79)

kn= -30 kI =-1

for discrete simulation of the bandlimited n th-degree system. To the extent that the

bandlimiting is ideal, this model performs the same operation as the continuous system.

In the computation there will be an unavoidable error, because of quantization and

roundoff.
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V. TRANSFORM ANALYSIS OF NONLINEAR SAMPLED-DATA SYSTEMS

In Sections III and IV we discussed sampling in nonlinear systems and the simulation
of continuous systems by sampled-data systems. The input-output relations for sampled-
data systems have been developed; they are multidimensional convolution sums, which
can be tedious to evaluate and give little insight into system properties. We shall now
discuss a multidimensional z-transform and modified z-transform that will facilitate
the study of nonlinear sampled-data systems.

The use of the multidimensional z-transform in the analysis of discrete nonlinear
systems has been examined briefly by Alper. 2 3

5. 1 MULTIDIMENSIONAL Z-TRANSFORMS

Definition of the z-transform and Inverse z-transform. The multidimensional
z -transform of a function f(r, 1 ... an) may be defined as

F(zl,.. ,zn) = ... flkIT,...,knT) zI ... zn. (80)
kn=_o0 k I =-0

We note that the z-transform of a function depends only on the values of the function at
uniformly spaced sample points and not on the entire function.

We assume that f(r,... , 'rn) has no impulsive components. If the summation of (80)
converges at all, it will converge within some region defined by ai % 1 zi 1 4 Pi, i = I,..., n.
A sufficient but not a necessary condition on f(-r .... .In) such that its z-transform exist
is that f(r 1 ,..., "n) be absolutely integrable; in this case, the region of convergence will
contain the multidimensional surface defined by the Cartesian product rixr 2 x... x rn,
where ri is the unit circle in the zi-plane. If a function -(rd,... ,1n) has a Laplace
transform, then it will also have a z-transform.

The value of the function at the sample points, f(kIT,... ,knT), may be cbtained from
the transform in a number of ways. A closed-form expression for the sample values in
terms of the transform is given by the multidimensional inversion integral:

Gjnrn.. r kl'n kn-I
f~lT...,nT .. z I .. n F(zl,...0zn) dzI.. dz n, 8

where r.i is an appropriate contour in the zi-plane. For most of the functions considered
here, Fr may be taken as the unit circle in the zi-plane. The sample values may also

be obtained as the coefficients in the series expansion of F(z ..... Zn) in z 1 ,.... Zn1

about the origin in the zl, .. , Zn-space. If F(zl,... ,n) is expressed as a ratio of
polnoias n -1 -1n

polynomials in zll,... Zn these coefficients may be found by division of the numerator
polynomial by the denominator. Examples of the computation of the direct and inverse
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transforms are given below. A partiaJ difference equation can also be fotxnd which gives

a recurs&ive method of computing the sample values from the transform; this method will

be discussed in Section 6. 2.

Properties of the Z-transform. The multidimensional z-transform has some properties
which make it useful in the analysis of nonlinear sampled-data systems. We list some

of these properties here; proofs are given in Appendix A.

If f(rl,... - rn)- F(zi,.,..zn), then

-b1  -b
(5. a. 1) f(r1"-blT,... ITn-bbnT)• zI ... zn nF(Zl, Zn)

where b1, ... , bn are integers.

-afI -antn afT a T
(5. a. 2) e ... e nf(,. n -- F(e e...,e Zn)

(S. a. 3) "rfT ,. T )o---.-Tz - a F(zI, .... n), i= 1, ... n.

If in addition g(r V... .'r) n G(z1,... 0Zn), then the transform

(5. a. 4) H(zIP .... ,Zn) = F(Zl, .... Zn) G(Zl,... , Zn)

corresponds to a function h(Tl, .... 'n) with sample values given by

h(PT,... ,PnT)= f(k 1T,.... ,knT) g(pT-klT,... PnT-knT)
kn=-O0 kl=-30

which is a multidimensional convolution expression.

Example 4

Let

I if 0 I

f(r"I IT 2) (82)

e otheIrwiise

Then, taking T 1, we have

42

'M.i.l.. ......l.. , .. • , .. . . _ .r . . . . _ • -• •• ,,



F(Z, 2-2) j, f(k, k2) z1  Z2
k2=-0o kI=-0o

A A -k2  k
• I zI z 2 2-- 22 z

k 2 -= k-=O k2 -O k I-O

l-z- 4  l-z 4  1 - 2-4 - z- 4 + zj 4 z 4
1 2 I l1 + 21 (83)

1-1  - 2  1z - 2 + 1 z2

Dividing the numerator by the denominator, we find the finite series with which we began:

- I1 -1 - 21- -1 -2 -2 + -1l

F(z.z.)=+ z + + + + 1 z2 1 2

+ -3 + -3 + -1-3 + -3z-1 +-2z-2 + -2 z-3
+ 1  + 2 + 1 Z2 + 1 Z 2 + 1  2  1 Z2

-3 -2 -3 -3
ZIz2+ z1 z 2 .(84)

The coefficients of this expansion give the sample values of f(T1 ,2).

Example 5

Let

e -T1e-3"r2(l - er I, atl 0, "r 2 >O

f(T,,r 2 ) = (85)

0 TrI <(0 or -r2 <0

where -r min(ri,T 2 ). Consider first the function

( -e--rTI :-'0, T2"!

f{(T", 2) = A (86)

1 < 0 or t2 <0

Then we have for the z-transform, with sampling interval T,
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F1 (z1, 2 Z? (le-?k T) 2 -kl ~z, k*2mnk 1 2
I k2 IO kk--O

~ ~ -2k T\ -kc -kc
L1(I-.e-2kT)(ZIz 2fk + -dd 1e 7 z 11 z 2 2

k=O kl>k2 ;n

+ - zI zk2  (87)

0<kl1<k 2

In the second summation, make the change of index kI = +2 + then this sum becomes

2k( ~ kT) -(k +k'j) -kc O -k' 00 -Z kT ~ -k2 (8-- ) z1 2 zz 2 1 1 ( -e I )(z z') 2. (88)

k'al k2=0 kl=I k2 -=0

The last sum, on 0 < kI <k 2 , can be treated similarly. We then have

F (ZZ 2 ) = [ (le-2kT)(z Zz)-k [I + z-k+ 3 zk (89)
= k=1 k= 1

or, evaluating these sums,

e zlr___ _ I z I 1

12 1 I 2 1j

( e-eT) Z 1 Z2 (1

(90)

after some simplification. Now using property (5. a. 2) for the transform of f('I, 1 2) we

have

(e-4T _ e-6T )Z- lz -1

F(zI, Z2 ) = • (91)

(-e .T- %,)(

We may make use of the inversion integral for the z-transform to obta.n from F(zl, z2)
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the value of any of the samples of f(.rr 2 ). Choosing f(T,T), we have

(e-4T _ -6T) z5 d2

f(T T)x 1 _ d _-dz

(-"e-"-e-T) (z

(22-e 3 T)

where we have evaluated first the integral on zI, then the integral on z22, using the

Cauchy residue theorem, with r the unit circle in each of the integrations.

S. 2 MODIFIED Z-TRANSFORMS

The z-transform of a function depends only on the values of the function at uniformly

spaced sample points. Often we would like to focus attention on the sample points, but

are nevertheless interested in the remainder of the function; in such cases the modified

z-transform is useful. The multidimensional modified z-transform of a function
f(rI,... 'rn) may be defined as

Fm(zl 1m;... ;zn,mn) = ... f[klT-(l-ml)T,...,knT-ll-mnlT] zI .. . zn

kn=-ao kI

(93)

where 0 % mi< 1, 1= 1, ... , n. Choosing a value for each of the mi amounts to shifting
the function along each of the axes in its domain of definition before taking the

z-transform. Existence of the transform, that is, convergence of (82), is insured under

the same conditions as given above for the ordinary z-transform.
The modified z-transform may be inverted to regain the function f(TI,..., Tn) by

means of the multidimensional inversion integral

f[(kl-lI+m 1) T,... (kn-l1+mn )T]=

S.. Z ...z ' zkn Fm(Zu,m;...;Zn, mn) dzi ... dzn, (94)
ni ) n

where ri is an appropriate contour in the zi-plane. As for the inverse z-transform (81),
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can be taken as the unit circle In the zi-plane for most of the functions considered

here. Noae that m 1 , .. o, mn are treated as parameters in the inversion integral. If

the modified z-transform F m(Zl m . Zn, mn) is expanded in a series in z-1 foe, z1
about the origin, the coefficients of the expansion will be functions of mi, ... , rn,

0 ' mi < 1, 1 x 1, ... , n, and will give the function f(rI... ,r n) in the corresponding

multidimensional sampling interval in the (Cr 1... ."n) -space. Examples of the compu-

tation of the direct and inverse modified z-transform will be given below.

Properties of the Modified z-transform. Some useful properties of the modified
z-transform are listed below; proofs are given in Appendix B.

Iff('rl,...,1rn) .. Fm(zl,ml;...;Zn, mn), then

-b1  -bn(S. b. 1) f(-'l-bT,,... ,n-b nT) -, zI ... ZI& nFm (Zl0m I;.; zn' mn),

where b1, .,., bn are integers. For shifts not equal to an integral num-

ber of sampling intervals, we have

01

1 11-

e i a .. e z in m i + I -,...,nn

0 ;...<A;z 1..,

f( T in T•.n- .nT) then
Fm(Z1 , ml-&1 ; ... ; zn, mn-An)

A 1 m i < I i=l..n

-a T -anT

(5. b. 2) e "'. e nf.rl,.. . mnn)

-a iT(m l- f) -anT( ran- l) ( a T -e ... e F (e Z, pm; ;... ; e ZnsIn, mn)

(S. b. 3) •i If(-r I)...,"� .. T[(m i- ) Fm(ZlM m I.. ;Zn, mn)

-Zl Fm(Zltml;•. ; Znmn) = .. n

If in addition f(-r .... , Tn) 0 m. F(zI 0..., Zn ), then

(S. b. 4) F(zI ... ,zn) z! . ZnFm(Zl Im; ... Zn, 'mn)lm =..mn=0
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For continuous f(l,...,r n), we have also

F(zl.... zn) Fm(z m l ;.. Z m..
n no n I mI = n z

Example 6

Let

e- Ie3, 2l- e--rTI a'0, -r2 ýt 0

f(rl,r 2 ) =1 (95)

0"T <0orT2 <0

where r =min(r V? 2 ), as in Example 5. Again consider first the function

'(1-e2-r*) I ;t 0, r2 at0

ft(-rl 2 ) 1, (96)

0 I <0°orr 2 <0

Then we have

FIm(zl,mi;z 2 ,m 2 ) = I I (I-e'2T(k*+m*- 1)) z- z2  (97)
k2 =0 kl=0

where k =min (kIc k2 ), and m = mi (inm, m 2 ). By making use of the same techniques
as in Example 4 (see Appendix B), this sum can be written

l-e2T(m*-1) 1 z1 (e-2T e-2T(m*)- (
FI m(z1 mI; z 2 m 212 ) (1_ Z I . (98)

Then use of property (5. b. 2) for modified z-transforms gives the desired transform:

F (ZI Oi; z2 , i 2 ) = e-T(ml-1) -3T(m 2 -1)

1-e-2T(m'-l)- zlzl1(e-6T-e 2 Tnm e-2T)

_ 6T z -lz ) (1 _ eTz-i) _ _3T z,47 (99)
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In order to obtain the inverse, consider first the denominator of the term in brackets;

we may write th..s as a polynomial ia z, and z,,

-eTz_1 - e-3TzI + -e_4T-e-6T -z-1 -9T+ e-'z;1 -2+ e-7T-2-1
21 - 22 1e - zz e 22 e 2~

e-lOT -2 -2-I 21 22. (100)

Dividing this into unity provides an expansion, which after juggling with the operations
indicated in the numerator of the bracketed term in the transform and combining, gives

the series expansion of the modified z-transform Fm(Zip m 1;... ; 'n inn). The first few

terms of this expansion are

-T(a 1 -1) -3T(m 2-1) [(1 -2T(m,-.) )+(e-T*e-2Tm*+T)al1

+ (6_3T_*.2Tl*-T)Z;1 + (,-2Te-2Tm*)z 2

)2

, ( 6T.* 2Tm*-41 )1 _. 4T *2 T)zh 1 -1 1

+ ,.,)

(101)

The coefficients of each term in this expansion display the function f(-r 1  2) as a

function of m1 , m2 in the two-dimensional sampling interval corresponding to that term.

5. 3 SOME PROPERTIES OF THE TRANSFORMS OF CAUSAL FUNCTIONS

The multidimensional z-transform and the modified z-transform of functions
f(-r,,. o. ,rn) which are "causal," that is, which are zero when any of the arguments

Tip " ° # , n are negative, have some special properties. We list some of these below;
proofs are given in Appendix C.

Initial and Final Value. If f(-r, ... ,rn) . F(zl,.... I zn), and f('r,... ,rn) = 0 for any

of the -r less than zero, then

(5. c.I) lim f(l,.,n)-- lim F(z... Zn) i= 1,...n.
Ir i--O zi--000

(5. c.2) Jim f(.lI.. n)-- rim (zi-1) F(z ,,..,Zn), i l,..,n.
1i*° -*Iz.-1, 1
I Oo i .1
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Relation to Laplace Transforms. The z-transform F(zl,...,Ozn) or modified

z-transform Fm(zlt,mI;... ;zn mn) of a causal function f(-rl..., ,rn) can be found

directly from the Laplace transform FL(s I,... sn) of the function by means of the fol-

lowing integrals. A justification of the integrals is given in Appendix C; an example of

their use is given below.

1 .n1 0 FL (Viet*,"vn)dvl.,"dvn
(Z $2 * (- -) I "" -TJ ......

)I 1T 2wJ an-J 0-J. -Ts-v))060(1.0(n

. (102)

r,(,, Mi; #m |.. tzn .9%) a
sit

3 *O

1I1,... Fn
avIT myn

an. 1-a @l.Ju FL(vl,....tun)e S...e

2wJ an'i " -. 1)n...v- )

(103)

Fer most functions considered here we may take 1= "... =n =0. Special care must

be exercised in the use of these express4 ons for a function f(T 1 .... , 1n)which is not con-

tinuous; at jump discontinuities of f(-r,...,r n) these expressions assume that
f(tr ,... ,'nd is defined to be the average value at the discontinuity.

Example 7

Let f(,rl, rd be the function whose Laplace transform is

2

FL(Sits2) = (104)
(S1+ I)(sz+3)(s i+sz+6)

We may find the z-transform of f(r 1 , 2 ), with a sampling interval T, directly from

(104) as follows.
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. :2dvldv
2

1wj -- 2 _.(s.-v )T -(s 2 "v2 )T

I1Us 8 (vT*+)(v 2 +3)(v 1 V2 +6 )(1-4 )(-s )

2

1 3*2dv 2 11

2wj - (v 2 ,0 3)(1-4 M(V 2  ,s) 2 .T )-s"5 'v 2+ )T2

I *'Tos1T',1 2( 1-e ST*V2 T)dv 2
Site - - II

S(.(, 1s 2+6)T2wj IsooTes IT (v2 +3)(1,- .3 2 )(v 2 +5)(1-0 )

I

T . . .T -2 G(s2 ÷ (1

1-cW 1 a 6 1e 0 2

where

G(s2 ) 2
(2 +3)(s 2+5) (106)

and we have evaluated first the integral with respect to v l, then the integral with respect

to v 2 , using the Residue Theorem and closing the contour of integration in the left-planie

for vI and the right half-plane for YZ' We recognize the summation as thte Laplace trans-

form of the sampled version of the function whose Laplace transform is G(s). That is,

if g(t) G(s) and g*(t) is the sampled version of g(t)

g*(t) = g(kT)uo(t-kT), (107)

then G *(s) is given by the summation in the expression above for F(Zl, z.). Evaluation

s2 T

of this sum at e = z2 will then yield the z-transform of g(t). This z-transform is

readily obtained from a partial fraction expansion of G(s) or use of (104) for n = I as
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-1 -3T -ST
Z2 (e -e ) (108)

and hence we have the desired z-transform

(4Te-6T -1 -.

F(zl, z) =. (109)
1~~~~ 2 3-6--

5.4 APPLICATION TO NONLINEAR SYSTEMS

A nonlinear system with sampled input and output is shown in Fig 31. The sampling

interval at the input is Ti and that at the output is TO. The input is x(t) and the sampled

x(t) x*(t) y1t0 YAMt)

TI T

Fig. 31. Nonlinear system with sampled input and output.

input is x (t); the output is y(t) and the sampled output is y (t). The system is charac-

terized by the kernel hn(lr... , Tn ), which we assume contains no impulsive components.

This situation was discussed in Section Ill. where the input-output relation was given as

0 00

y(pT) = ... x(kIT) ... X(knT) hn PT-klT.... pT-knT) (110)

kn=-0o k I =-cc

and we assume, initially, that Ti = To0 = T.

Input-Output Computation. Although (110) is not quite a multidimensional convolution

sum of the form given in property (5. a. 4), we may make use of an artifice suggested by

George25 for continuous systems, introducing the auxiliary function

Y(n)(PlT... ,PnT) .. " x(kIT) ... X~knT) hn(plT-klTp..... PnT-knT)
kn=-w k I =-30

from which the sample values can be found:
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y(n}(PlT ... ,pnT) IPA**y0. ) ( 11 APT

Using property (S. a. 4), we find that the transform of the auxiliary function is given by

Y(n)(2 A...zn) * Hn(Zl ... ,Zn)X(z 1) ... X(zn), (113)

where Hn(zlI..., zn) is the multidimensiona! z-transform of the kernel, and X(z) is the

one-dimensioaal z-transform of the input.

If we do not sample the output, we have in place of (I11)

Y(n)(t,*...,tn) = X(k 1 A ... X(knT) hn(tl-k 1T,...,tn-knT). (114)

kn=-oo ki =-00

Taking the modified z-transform then gives

Y(n)m(Z ,niM;...; Zn, mn) = Hnm(zl,mi;... ; Zn, mn) X(zl) ... X(zn). (115)

Association of Variables. As shown in Appendix D, the one-dimensional z-transform

of the output, Y(z), can be found from Y(n)(Zl,. Zn) by use of the following integral.

Y(z) = n"" (WW.. " 1 - it() 1' z .... dn lW

n-I 
1

(116)

For continuous outputs, the corresponding expression in terms of the modified

z-transform is

, n- w w2
Ymiz' M) = I . (WIW 2...W n-II A (n)m V' w Wz

*dw 1 ... dwn_1 . (117)

This procedure is analogous to the association of variables given by George for the
continuous case, and, as in the continuous case, can be carried out as an inspection
technique for simple functions. The basis of the inspection technique is the replacement

A(zlz,) 1 1 - A(z) 1 (118)

(1- eaTz;') (-e -bTz-l) 1 - e'(a+b)T z-1

which is derived in the Appendix D. An example of the use of this technique is

given below.
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Difierent Samplinj at at t put and (t put. If the otp'At sampling interval is not

equal to the input sampl*ng interval, Eq. 110 becomes

y(pTo) =.. x(klT i )... X(knTi) hnPTo-kiTi, *PTo-knTi). (119)
,:k kn=. kl.o

Let T.i rTo, where r is a positive integer. Then we have

y(pTo) = x(klrTo) ... x(k rT ) h (pTo-k rT ... , pTo-k rTo). (120)
10n 0 nl 01O 0 nl

kn=- =k-

Forming the auxiliary function y (n)(PlTo.... ,PnTo) and then the z-transform

Y(n)(ZlI t... ,z)n we have

Yl(nZ l""Zn) = H(z,... ,Z n) X z ) ... X(zn).

Interconnections of Systems. We consider here the interconnection of nonlinear

sampled-data systems H and K when we assume that the systems are characterized by

the Volterrakernels hn(rl,....,'rn), n= 0,I,...,Nh, and kn(11,...n1*n). n=a 0,1,...Nk

before the input and the output are sampled. We will denote the interconnection of H

?? ae)

III

Fig. 32. Sum of sampled-data systems.
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x

HOLD ()

III

T T

(b)

Fig. 33. Product of sampled-data systems.

(b)
1k

(a)

Fig. 34. Cascade combination of sampled-data systems.
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and K by G, with the Volterra kernels gn(r 1n .... Tn), n o, I.... ,Ng. befort the input
and output are sampled.

Consider first the addidon of H and K, as shown in Fig. 32. It is clear that the
systems of Fig. 32a and 32b are equivalehit. For G = H + K, then, we have

gn (pT,... ,pnT) - hn(PT,.... pnT) = kn(PlT,,.,,PnT) (122)

Gn(z1,...,zn) = Hn(zI,...,Zn) + Kn(Z.. ,Zn) (123)

for n = 0, 1,... ,N and Ng = mAX(NhNO)

For the product of H and K, the situation is as shown in Fig. 33. The hold circuits
are needed in Fig. 33a, since the multiplier is a nonlinear no-memory device as dis-

cussed in Section I1. The systems of Fig. 33a and 33h are clearly equivalent. For G =

HH. K, then, we have

gn(PlT,... T) hr(PIT. ,p rT) kq(Pr+IT.... pnT) (124)

Gn(Z ,...,Zn) =I Hr(ZI..,Zr) Kq(Zr+I .... Zn), (125)

where the sum in both (124) and (125) is taken over all pairs of integers re40, I,... ,Nh}
and qc{0, 1,... ,Nk}. and both expressions hold for n = 0, 1,.... N with Ng = N N

The cascade combination of H following K is shown ir. !ig. 34. It is clear that the
systems of Fig. 34a and Fig. 34b are equivalent, while that of Fitg. 34c is not equiva-
lent to the others. Following the procedure used by Brilliant2 6 for the continuous case,
we have for the systems of Fig. 34a and 34b

qn(PIT,..,PnT) = ... hIN(rT,. ,riT) II km(...,PlT-rjT...).
i=0 ri -00 rl=-Q0 =

(126)

The numbers mj are formed by taking all permutations of i non-negative integers which

sum to n. The order of the subscripts on the p() in the brackets is not important. The

second summation, for which no index is shown, is taken over all permutations of i num-
bers mj whose sum is n. The corresponding kernel transforms are given by

N

Gn(z I... ,zn = H(l, ... ,own) jI Km(.... Z)....1, (127)tffi I

where a. is the product of arguments of K M. As in (126), the second summation is over
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T T

Fig. 35. Sampled-data feedback system.

Table 2. Kernel transforms for the feedback structure of Fig. 35.

G1z1  1 -z

1-H 1(z

""21z(,z2)
C2 (z ,z2 [1l-H1 z 1z2)JE1-H1(z I)J(1-H1(z)2)

1 1
1-H1 (z 1 z2 z 3 ) [1-H (z

jlz

L .z"2'1-H 
1(z2z-3) ]

all permutations of i numbers m, whose sum is n, and the order of the z() is not

important.

For the values n = 0, 1, and 2, assuming ho = k0 = 0, we have from (127)

G--o

Gl(z1) = Hl(zl) K(zl) (128)

G2 (z 1 ,iz) = Hl(zlz,) K 2 (zl,z,) + H2 (z 1 , z2 ) Kl(z 1 ) Kl(z 2 ).
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The same relaLons given in Section 11 for a continuous nonlinear systern in the feed-

back configuration of Fig. 12 hoid for the sampled-data feedback system of Fig. 35,
except that ternis involving sums rof s. now invwlre products of z,. Table 2 gives the

z-transforms of the first few kernels of thn sampled-data feedback system G in Fig. 35

in terms of the kerrel transforms of the open-loop system H. We emphasize that, as

in Section II, these relations arc formal; they arsume that the feedback structure may

be represented by a Volterra functional series.

Example 8

Consider the system of Fig. 36. The input and the output are sampled with the

sampling interval T; x(t), x (t), y(t), and y (t) are the input, sampled input, output, and

Fig. 36. Nonlinear sampled-data system of Example 8.

sampled output, respectively. The linear systems N1 , N2 , and N3 have the syster"

functions shown.
The z-transform of the kernel of this system was computed in Example 5 by using the

definition of the z-transform, and again in Example 7 by using the frequency-domain

technique of (102). It is given by

(e-4T e-6T) zIz -1
H2 (z 1 , z 2) (2 (129)

(l e -Tzl 1 1 -e-3Tz 2 )1 -e -6TzI Iz 2!)

If x(t) = e- 2 tu I(t), then we have for the auxiliary output y(2 )(tl,t 2), according to Eq. 114
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-1 - ~-3? -z1 2 2;-12T-

(1-0GT 22 ~)(1_-eT 54l)(1* 22 ;)(1.-2T I)(1_-e22 :'.

(* T.r*.2T )(G*3 T..,.2T) ( 1.0e 6 ? -1 1)

2 22

(130)

Then multiplying out the terms in brackets and using the inspection technique for the

association of variables we have

Y()= (-4T _e- 6 T ) -1

Y (z) -T e-2T -(3T e- 2T e T

e[ 4 e ~-S:T - e- :2T + -e4T 1(131)
from which the sample values of y(t), y(kT), can be easily computed.
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VI. SYNTHESIS OF SAMPLED-DATA SYSTEMS

We shall now consider methods of synthesis for sampled-data systems. As in Sec-

tion II, we consider nonlinear systems that can be represented by a single term from

a Volterra functional series, and hence are characterized by a single Volterra kernel,

hn(r,.... ,rn). We assume that the sample values of the kernel, hn(kT*..... knT), and

the corresponding z-transform, Hn(Z1 ..... Zn), are given. The basic building block

for the synthesis of sampled-data systems is the digital computer; we consider methods

of computing the output sample values y(pT) from the input sample values x(kT). We are

concerned only with computation algorithms, and ignore both quantization and round-off

error.

First, we consider direct computation of the convolution sum, then we discuss

computation of the sample values of the auxiliary output function y(plT, .... pnT)

through the associated partial difference equation, and finally we describe the

decomposition of an n th-degree system into a combination of linear sampled-data

systems.

6. 1 DIRECT COMPUTATION OF THE CONVOLUTION SUM

For an nth-degree system with sampled input and output, the input-output relation

was found in Section III to be

y(pT0 ) = ... Y x(kITi) ... x(knTi) hn(pTo-klTi.... pTo-kjri). (132)

kn=- klI

If we assume that the kernel is realizable or causal and that the input is applied at t = 0,

(132) becomes

a a
y(PTo0) =I ... I x(k ITi) ... xlk nTi) hn (PTo0-klTi,.... pTo-k nTi), (133)

kn=0 kI=0

where a = [p(T0 /Ti] is the greatest ineger function in p(T/Ti). There are an te:ms in

this sum; evaluation of the sum requires the computation and addition of each of these

terms. This is a formidable task indeed if p is very large.

If we assume that the kernel is symmetrical and that only a finite number of the

samples of the kernel are nonzero, that is, that the system has a finite memory, com-

putation of the sum in (133) is simplified. But the ar.ount of computation required will

even then be prohibitive except in simple cases. Direct computation from the convolu-

tion sum, except in simple cases, is a severe problem even for linear systems; in the

nonlinear case, the computational difficulty grows roughly exponentially with the degree

of the system.
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6.2 COMPUTATION FROM THE ASSOCIATED PARTIAL DIFFERENCE EQUATION

The input-output relation for the traasforms of the input and output functions wa;.

found in Section V to be

Yn(Z, - Hn(Z1 ,...,zn) X(zl) ... X(zn), (134)

where Y(n)(zl,..., Zn ) is the z-transform of the auxiliary output function

Y(n)(PlT.... I'PnT), Hn(Z I'" "" , Zn) is the z-transform of the kernel h n(kIT,... knT),
and X(z) is the z-transform of the input x(kT), and we assume that the input and output
sampling intervals are equal and equal to T.

If H~(z -1 -I' Hn(Zt,... ,zn) can be expressed as a .,atio of polynomials in z . .... z

Hn(z 1 .... zn) =- , (135)

where P(.) and Q(.) are polynomials, then we may write

Q(zj',... .'z') Y(n)jzl,'... , P , (z I"... -zn') •)+z, ... X(zn) (136

-bi
Recognizing from property 5. a. I that zi can be interpreted as a delay operator, we
may take the inverse z-transform of both sides of (136) to find a linear partial differ-

ence equation with constant coefficients, which relates the auxiliary function

Y(n)(PlT.... pnT) to the input x(kT). This partial difference equation provides a recur-
sive computation algorithm for the auxiliary output function and hence for the output
y(pT). We illustrate this method with the following example.

Example 9

Let

H(e4 T-e- 6 T) ZI I21

"eZ 6 ( , I Z _, Ie,)zI Z (13)', -

Then we have

[1eTz •1e3T z+(-4T -6T)-1 -1 . -7T -2 1. -e9 r 1 -2-lOTZi 2 z -Y11e-Z -- +e-_e ),z2 +e- zI z. +e 11lz2-_e 10T1222Y1 2)ZlZ2)

(e-4T e-6T) zl 1 z2 X(z 1) X(z 2 ) (138)

and hence

60



Sy(pIT,p 2 T) e-Ty[(Pj-I)T,pTj + e_ 3Ty[pjT,(p2-I)TJ - (e-4Tc- #,') y[[(pI-I)T,(p 2 -1)011

- e'Ty[(p -2)T, (p,-I)T] - e ' 9 Ty[(p I _I)T, (P2 -2)T]

+ eI10Ty[(pl-2)T, (P-2)T1 + (e- 4 Te- 6T) x[(p 1 -1)T] x[(P 2 -1)T],

in which we have dropped the subscript on y(p 1 T, p2 T) for convenience.

If we assume that x(O) = 1, and that all other input samples are zero, then (139) is a

recursive relation for the computation of the inverse z-transform of Hz(Z 1 , z2 ), and thus

we have arrived at another method of inversion for z-transforms, in addition to those

given in Section V. For arbitrary x(kT), in fact even for random x(kT), since over any

observation interval of arbitrary but finite length we could conceptually find the corre-

sponding z-transform, we have a recursive computation algorithm for finding the out-

put samples for a given sequence of input samples.

The major drawback of this method is that we must actually compute more than just

the output samples of interest; we must compute the samples of the entire auxiliary

function. Thus in Example 9, we must compute 2p samples, which are not of interest

as far as the output y(pT) is concerned, in order to compute the pth output sample from

the (p-I)th output sample.

This is in contrast to the situation for the linear case, in which the corresponding

recursive relation is an ordinary difference equation, and all output samples that must

be computed are actual output samples. In the nonlinear case, we must compute at each

step the value of samples that are not of interest in order to get to the next sample of

interest.

6.3 DECOMPOSITION INTO LINEAR SAMPLED-DATA SYSTEMS

In Section II we developed a procedure for determining whether or not an n th-degree

kernel can be realized exactly by using a finite number of linear systems and multipliers.

By using the same trees and the rules for the interconnection of sampled-data systems

which were given in Section V ir place of the corresponding rules for the interconnection

of continuous systems, we can determine from the kernel transform Hn(za ..... Zn)
whether or not an nth-degree sampled-data system can be decomposed into an intercon-

nection of linear sampled-data systems. When such a decomposition is possible, we

may form a computation algorithm for each of the component linear systems considered

separately, and thus achieve a composite algorithm for the computation of the output

samples of the nonlinear system from the input samples.

Example 10

Consider again the kernel transform of Example 9. We can write

61



H( )= (e- 4 T_e- 6 T 1 z;1 (140)
2 (z -e2 ) T 1 -- e- 3Tz21 -e'6T(z.z2)4

or as

H2 (zIz 2 ) = (e4T e" 6 T) Ka(zI) Kb(z2) Kc(zI zZ), (141)

where Ka(z), Kb(z), and Kc (z) are the systems functions of linear sampled-data systems.

The equations

u[pT] = e'Tu[(p-I)TI + x[(p-1)TJ

V[pT] = e' 3Tv[(p-l)T] + x[(p-l)TJ (142)

r(pT) = u(pT) v(pT)

y[pT] = e- 6Ty[(p-l)T] + e' 4 T- e- 6 T) r[pT]

then form a computation algorithm for computation of the output samples y(pT) from the
input samples x(kT).

Example 11

Consider again the kernel of Example 3.

h2 ( 1 ,T,2 ) ( 1 "2) Ul(1-rl--r2 ) uI(- 1 ) uI(r 2 ) (143)

We found in Example 3 that, as a continuous system, this kernel was not realizable
exactly with a finite number of linear systems and multipliers. It is of interest to exam-
ine the corresponding sampled kernel. ThE z-transform of the kernel (143), if we
assume a sampling interval of T, is

H2(ZlRZ21 0=0 (l-klT-k2 T) u l(l-klT-k2 T) ul(klT) ul(k 2 T) zI z2

k2=-00 kl =-0

(144)

Make the change of index kI + k2 = k. Then (144) becomes

I/T k -kI -(k-k 1) A A -k I

H2 (z I, z2) = I I (I -IT) z1  Z2  I ~ (1-kT)z 2 -k1z2) (145)
k=0 ki =0 k=0 kl=0

Now
N w k ( -k I 1 - ( / Z 2 ) - k - I 1( 

1 6
S(z /2~z) = -( 1/ 2 k (146)
k0 /21 - (zl/z2)- 1I
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The remaining sum may be interpreted as the sum of a step, a negative ramp, and a

delayed positive ramp.

I kT)z-k I T - -1+Tz1  z-

kI-- I - z (1-z-I) 2  1-z' 1)2

I - (l+T)z-I +T"(I/T)-I

z1 2 F(z). (147)

Combining these results, we evaluate (145) as

H2(zl Pz 2 ) I - [F(z 2) -(z/z 2 )- IF(zl)I, (148)

or

('-Z7 )2•( ,_,+T)z••+Tz; ,r/T)l-) - (,-z 1) 2 (z7_(,+T)z••+Tzj('/T)-•)

H2z z)=(z 21-z I (l-z7 ) (l-z2,)

(149)

The factor (__Z_ 1 ) in the denominator may be divided out to give

H2(zI, z2)

1- (,+T)(z11+z 2 ') + (1+2T)zl1'z- + T(z,2 'z.(/T)+zI (l+ /T)lz-1-2-(/T)l z2l- 1)

2_1)2 ( 2_,1'

-1 -2
T (Zz 2I/T)-Iiz 2 (/T~z 1 1+,..+Z2 z 1 (1/T)l~i

+Z-)2 (150)

Examination of (150) shows that H2 (z 1, z2) can be represented as an interconnection of

linear sampled-data systems, although this realization will be rather complex, par-

ticularly for small T.
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VII. TIME-DOMAIN SYNTHESIS TECHNIQUE

7.1 IMPULSE-TRAIN TECHNIQUES IN LINEAR SYSTEM THEORY

An important feature of the use of the convolution or superposition integral in linear

system theory is the possibility of impulse-train techniques. 2 7 The input-output relation

for a linear time-invariant system may be given by the convolution integral

y(t)= 3 h(r) x(t-,) dr,_(151)

where x(t) is the system input, y(t) is the output, and h(-r) is the unit impulse response

or kernel of the system. A generalized expression is

Y (m+k)(t) h (hm) T) X(k) (t-.) dT, (152)

where m and k are positive or negati• • integers, with f(k)(x) representing the kth deriv-

ative of f(x) if k is positive and the kth successive integration, as in (153), when k is

negative.

f($lllx) f(y) dy. (153)

If some derivative of h(.) or x(.) yields only impulses, evaluation of (152) becomes

very simple. This technique is useful in the evaluation of (151), in finding the transform

of h(.), and in finding approximants to h(.). and is thus extremely useful in the synthesis

of a linear system when h(.) is given.

7.7- GENERALIZATION OF IMPULSE-TRAIN TECHNIQUES TO NONLINEAR

SYSTEMS

We shall now demonstrate the use of impulse-train techniques for nonlinear systems.

Consider a nonlinear system for which the input-output relation

+_00 .-'%+00

y(t) = h n V V .. n ) x(t-rI) ... x(t-rn) dT, ... d1rn (154)

applies, where x(t) is the input, y(t) the output, and hn (t1 .... rn) the kernel of the sys-

tem. This relation may be generalized just as in the linear case to give

+W ... + 0 h(me)l .. r xlk)(t_, ) xl(k) (t_,n ) -r(1 5y(t) k_ n.V... 0 no n 1', ) ... d~ . . •n. 1

Here the superscripts x(.) have the same significance as in (152), and m + k = 0.

We define
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nm n(r nhn)(0, ¢n) nmh(r ... rn)
n~ ~~ I " ~..,

for m positive. For m = -1, we define

h(" (rI , . n .rn ... l hn(n ......nn) d I d n..,. .,. (156)

For m any negative integer. h(m)(TI,... ) is found by repeated application of (156).

Although (155) is true for any n, it appears to be most useful for n = 2, since we may

often use graphical techniques in this case. Examples of the use of (155) for calculation

of kernel transforms and synthesis of a given kernel for second-degree systems are

given below.

7.3 EXAMPLES OF THE USE OF IMPULSE-TRAIN TECHNIQUES FOR

SECOND-DEGREE SYSTEMS

Example 12

Consider the second-degree kernel given by

h2 (r,rI 2 ) = uI(r1 ) U_ (1-T 1 ) u_ I(r 2 ) U 1 (l-r 2 ) (157)

and sketched in Fig. 37a. Form the partial derivatives with respect to T1 and then with

respect to T2 . This may be accomplished either graphically or analytically, with the

following result:

8h 2  [u ) ( I ) 0

82h ((158)r--= 'o(TI) uo('r 2 ) - UO(r 1) uo(l-T"2 ) + Uo(I.-- 1) UO(1-r 2 ) - UO(l-rI) UO(r 2 ).

These partials are sketched in Fig. 37b and 37c. A type of singularity which we shall

call an "impulsive fence" occurs in the partial with respect to %1 (Fig. 37b).
The four impulses of the second partial can be realized as shown in Fig. 38a, and

combined as a sum to give the system of Fig. 38b, which is a realization of the second
partial. Simplification yields the equivalent system shown in Fig. 39. Precascadir g
an ideal integrator, as in Fig. 40, yields a system which realizes the original kernel.

Note that only one integrator is required, although two differentiations were performed.
Simplification yields the system of Fig. 41. Of course, in this simple example, we could

have found the system of Fig. 41 directly from the expression for the kernel (157).
We may also use this technique to obtain the kernel transform, as in Eqs. 159 and 160,
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'1 
(a)

sh 2

T2

(b)

12h

(c)

Fig. 37. The kernel of Example 12.
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(1)

(a)

(b)

2

Fig. 38. Realization of B of Example 12.
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de~lay

Fig. 39. Simplified realization of * of Example 12.

FR i ek 2 1

Fig. 40. Realization of the kernel h 2 (-r, 21 of Example 12.

Fig. 41. Simplified realization of the kernel of Example 12,
with k(t) = u_,(t) U-1 (0-t).

since the transforms of the components of the singular kernel of Fig. 37c can be writ-

ten by inspection. Factoring the transform expression of (160) to separate variables, we

obtain the transform expression (161). The systern of Fig. 41 is recognizable from this

form also.
82h2 e-s " - " - s

+-- -- 8 1 2 • s e Il e " 2 (159)

h + e-"I e-s2 - e-sI - e~sZ (160)
1 e I -a 2

sl/ s /(160)

H2ss)= (I_ e-91) (I- .e-Z) (161)

Example 13

Consider the second-degree system characterized by

h2 (Ti1 , T = (1-,r- 2 ) U (1-rl-r2) u.I(tr) uI(-2 ) (162)
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'2

*1h

T2

(b)

2T

Fig. 42. The kernel of Example 13.
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and shown in Fig. 42a. Partial differentiation of this kernel yields

Ohz Su I " -(T-' 2 ) U u- I ( 2) + (--r 2) u- (1--r2) u- 1 ( 2 ) u0 (r1 )

*2 h2 (163)
-�~ % UO I--) U'. () u UI('2) -U (I-r 1 ) U.I(T-) UO(T 2 )

-- U. 1 _,(T,) uO( 1 ) -('1) UO(r 2 ).

These partial derivatives are sketched in Fig. 42b ani 42c.

Let us find Vie transform of the kernel (162). We shall look at the derivative (163),

taking each term separately and summing. The transform of the second partial deriva-

tive is thus

-8 -s2 e-Sl _S

I-e - 1--e e- e e-
81 s2 s2 s1

Simplification yields

of ( - 9Z- e-s) - s(I- s, e-

Sl182(S2-S1)

as the transform of the second pru tial, and hence we have

h 2

T2

Fig. 43. The kernel of Example 14.

70



Sh 2

(a)

't2

(b)

Fig. 44. The kernel of Example 14.
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9 2 -1 -8 e- 8 2) 8( e-

H2 (sl'S 2) 9 2 2 ( (164)

s1 s 2(s 2-s )

Example 14

Consider the kernel given by

h(,, -(1- -Z) u -t1-Jrl-r.1) u 1 (r•) u (,r2  (165)

and shown in Fig. 43. This kernel may be differentiated as shown in Fig. 44a and 44b.

The transform corresponding to Fig. 44b is

-sI -s2 -sI -s-
+ 2 1 -e I -e e e (166)

sI +8 2 sI s2 s 1 + s2 sI + s(

Simplification and division by sI and s2 yields the kernel transform for (165):

- (I-s- e-s ) - (l-s.-e- sz)

H 2(ss 2 ) = 2 2 ' (167)
SlS2 (S1 +S2 )

We see by inspection of this transform expression that the kernel is realizable by a

Fig. 45. Realization of the kernel of Example 14.

Fig, 46. Simplified realization of the kernel of Example 14.
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finite nunber of lincar systems and multiplierd. An equivalent but unsymmetrical kernel

transform is

-sI
e +S-I 2(H1 (sis s 2 (168)

2 2 6182 sl 2 a1+ s2 '

This kernel can be realized readily with only one multiplier as shown in Fig. 45 and in

simplified form in Fig. 46.

7.4 REMARKS

Some important observations can be drawn from these examples. From the kernel

transforms of these examples, we can see that the kernels of Examples 12 and 14 are of

the cl... ý.L.L ar, LL; rtlizud cx,,tly ". f.L116v number of linear systems and multi-

pliers, while the kernel of Example 13 (considered also in Example 3) cannot be realized

with a finite number of linear systems and multipliers.

We might attempt to approximate an arbitrary kernel h 2 (rIt I'2) with planes, so that

we could differentiate with respect to -r and r2 to obtain a new function consisting of

impulses and impulsive fences; if we could find a system that realized this singular

kernel, then the original kernel would be realized by this system cascaded after an ideal

integrator. Manipulation of the resulting system as in Example 12 might lead to a quite

simple realization.

7.5 REALIZATION OF IMPULSIVE FENCES

Exactly Realizable Impulsive Fences. Example 13 shows, however, that not all impul-

sive fences are realizable with a finite number of multipliers and linear systems. In

fact, a little reflection shows that the only impulsive fences that can be realized with one

1

Fig. 47. A system whose kernel is an impulsive function.

multiplier and linear systems are those that lie along lines intersecting the TI or r2 axes

at a 45' angle, or along lines parallel to the axes. Such an impulsive fence is

f(TIl,'T2 UO(rI-T 2 ) u_1 (T1 ) u 1 (T 2 ) (169)
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which has the transform

F(ss a (170)F 2) al +

This is realizable as shown in Fig. 47.

A unit impulsive fence passing through the origin of the -r, T2 plane at any other

angle will not be realizable with a finite number of linear systems and multipliers. , For
examlple,

g(r, 2 ) . UO(T 1 -a%2 ) u.I(.r) u.I(r2 ) (171)

has the transform

G(s 1 s, )5 Z as1 " (172)

Approximation Realization of Impulsive Fences. The impulsive fence

-S -s
%O(-r 1 r 2 )d u-(T) u-(-r e 'e 2

I 1- -12 82 -8I (173)

of Example 13 lies perpendicular to the 450 lines and thus cannot be realized exactly with

linear systems and multipliers. We can, however, realize this impulsive fence approx-

imately by means of an appropriately weighted set of isolated impulses occurring on the

same line in the 1I' T2 plane.

t2

"T I ÷T2 21

7 3

ToI

Fig. 48. Approximation of an impulsive fence.
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Partition the line -rI + T2= I into intervals of length T as shown in Fig. 48, so that

the end points of the intervals fall at the points (kT, 1-kT), k = 0,..., I/T. At each of

these points we place an impulse whose area is equal to T times the amplitude of the

envelope of the impulsive fence at that point. Hence we have

I•T "h(ro-kT) uo(i 2 "-+kT) (174)

k=0

as the propnz,?d approximation to the Impulsive fence of (173). The transform of (174) is

T -kTsI -(l-kT)s2 T e-s2 ekT(ls-s 2 ) (175)

k=0 k=0

We can write the expression on the right in (175) in closed form as

T e2 1-e-(sl-S2)(l+T) -S2( - (Sl-S2)(I+T). T
Te e-T(s 1 -S 2 ) e (I -T(S -S2) (176)

1 -e 1-e

As T - 0, by l'Hopital's Rule, we have the limit

e 5 S 2 (177)
S I-S2

Thus, to approximate this impulsive fence, we need only isolated inpulses along the

line of the impulsive fence, weighted according to the envelope of the impulsive fence.

Other impulsive fences may be approximated in exactly the same fashion.
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VIII. ANCILLARY RESULTS

I8. TIME-INVARIANT SYSTEMS AND TIME-VARIANT SYSTEMS

Physical situations can sometimes be modeled with either a time-variant system or
a nonlinear system, according to the viewpoint one adopts, There is a very close con-

nection between time-variant systems and nonlinear time-invariant systems, as we shall

point out.

X1 H2 ------

H 2+(/2t)t

x2(t ) H 2--------

Fig. 49. Configuration for cross-term output.

Consider a second-degree system characterized by the symmetrical kernel h2 (U1, T2 ),

with input x(t) and output y(t). The input-output x lationship is given by

y(t) = 5'$ h2 l(r' "2) x(t-rI) x(t-T2 ) d-rd- 2. (178)

Consider the configuration of Fig. 49 The three systems are identical, and the inputs

and outputs are combined as shown. After scaling the gain by a factor of one-half, we

obtain the output

y(t) = S hO(I, 2) X I(t--r) x 2 (t-T 2 ) drd-r2 . (179)
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Now suppose that we let x2 (t) a u0 (t) and keep x,(t) arbitrary. The output now

becomes

y(t) h• Sha(l.t) xl(t--r) d-r. (180)

That is, by application of a timing pulse x2 (t), with second-degree time-invariant sys-
terns we have precisely the situation encountered in a linear time-variant system. The
restriction as to the class of linear time-variant systems may be represented in this
way or determined by the kernels h2 (rI, fr 2 ) that we permit. We could also choose the
input x 2 (t) in other ways, for example, an impulse train or other periodic signal; we may

choose to make x2 (t) random in order to model a randomly time-variant situation.

We have assumed in (180) that the kernel h2 (rI, 02) is symmetrical; however, if we
are able to identify in a realization of the second-degree system which portions are
identified with r1 and which with %, then the requirement of symmetry is not really
necessary. For example, in Fig. 50, if the upper branch is identified with rI and the

lower branch with %2, we may apply xI (t) and x2 (t) as shown to obtain a time-variant

system without the restriction to a symmetrical kernel.

KIMy ka(t)

x2 (t) 

kb lt) 

k 
-

Fig. 50. A linear time-variant system.

Thus, if a time-variant kernel h(T, t) is given, we can realize h(TI, T2) as a second-

degree nonlinear system using any of the properties or techniques of the preceding sec-
tions, but keeping track of which parts of the realization we wish to identify with 1I and
which with r2 ; then application of a timing pulse or signal to the - 2 branches and the
input x(t) to the -r1 branches yields a realization of h(T, t).

Second-degree time-variant systems may be obtained from third-degree time-
invariant systems from the configuration shown in Fig. 51. The output is given by

v(t) = SSh 3 (Tl,. T2, T3) xi (t--r) x2 (t-r2 ) x3 (t-r 3 ) drIdr 2 dr 3 . (181)
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t)
SX(t)

a3 (

Fig. 51. Configuration for cross-term output.

If we allow x (t) = x 2 (t) to be arbitrary, but make x 3 (t) = u0 (t), we obtain

y(t) S h3 (r i2zt) x(t-rI) x(t-r 2 ) dTIdT2 , (182)

in which we have dropped the subscripts on the input x(t). This can be interpreted as

representing a second-degree time-variant system. Other variations are also possible,

and, with rapidly increasing complexity, we may consider higher degree systems too.

8.2 RELATION BETWEEN INTEGRAL AND DIFFERENTIAL CHARACTERIZATIONS

OF NONLINEAR SYSTEMS

Consider the nonlinear system shown in block diagram form in Fig. 52. N1 , N2 , and

N3 are linear systems, and N4 is a multiplier. The behavior of the system can be
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characterized by the set of Eqs. 183-186.

dz(t)

S+ az(t) = x(t) (183)

dw~t)d"-t- + bw(t) = x(t) 
(184)

d 2y(t) dy(t) dr(t)

dt2  + d--t- + ey(t) cr(t) + d- (185)

r(t) w(t) z(t), (186)

where x(t) is the input, y(t) is the output, and w(t), z(t), and r(t) are the inputs and out-

put of the multiplier, as shown in Fig. 52. Equations 183-186 describe the behavior of
N through N4 . We shall assume that all initial conditions are zero.

I IM

Ssr~t)

S~W(t )

Fig. 52. A simole nonlinear system.

We would like to find a differential equation relating y(t) and x(t); that is, we would

like to eliminate w(t), z(t), and r(t) in Eqs. 183-186. In order to do so, we shall
extend the domain of definition from a line to a plane, and look along the 450 line in the

plane.
Define r(tlt 2) = w(tl) z(t 2 ) and ^(t,, t2 ) such that y(t) is 9(tl,t 2) 1tl=t =t Substitute

t for t in ()84) and t 2 for t in (185). Then multiplication of (183) and (184) and use of

the definition of r(tI, t2 ) yields

2A8 r(tl, t2) 8r(tIt 2 1 Or(tIt 2 1
+ a + b + abr(tlPt2) = x(tl) x(t2). (187)

tztIat2  abtt t79
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In order to express (19P) in terms of 9(t 1, tY) we must find an expression for dy(t)/dt in

terms of 9(t. It.). Since q(t, t) - y~t), the desired derivative will be the directional

derivative of 9(tYt 2 ) along the line tI "• t2., scaled by the factor 4T to obtain the proper

rate of change. The directional derivative is given by the dot product of the gradient of

9(t1 ,t 2) with the unit vector in the direction of the 451 line. Hence we have the corre-

spondence

dy(t) 8)(tl,t 2) _(tlt_)

-- -•"(V9(t 1 ,t2 )) • + (tt (+88dt2at 1  at2

Repeating this operation, we find the correspondence for the second derivative.

22^ 2d y(t) • •2(t t2) 8 2y(ti It2) 8) (ti, t 2 )

dt2  at2a 2 a t2
1at 8t 2 8t2 at1

By using these results (186) can be extended to

*,A 2^ 2 a a ^
.- + 2 +t2 t--- d +-+ +d. +ey= cr+ j-+ j--. (190)

We must now combine (190) and (187) to eliminate r(t 1 ,t 2 ). This may be accomplished

as follows. Take the partial of both sides of (187) with respect to tI to obtain (191), and

with respect to t 2 to obtain (192).

3r 82 a, _ dx(t)8t 2 8ta + a r+ b pt- + a- = - ) x(t2 ) (91)

2A7 92a az•A• dx (t)
9p +at--- - + ÷b - +ab Ox(t ) 2 (192)

at2 atI at2  at2at1  2 dt2

Also, we take the partial of (190) with respect to tI to obtain (193), with respect to t 2 to

obtain (194), and with respect totI and t2 to obtain (195).

y3• y39 ay _ _ :p _ a• a2• A+ 28t"•'÷+ 28zt ~t dt--+d+ -l=c a-l+a-- 9 2r t (193)

tzat---- 3 aat2at2 a-t 1 R-e at1  at 2 at-

tzt---• + -2 +d- dj -8t+j 1-•Sl S~t _ (193)-•

1 t2 at 1  2 1 1 t2

a y ~ 9 *9 .9 .99 r r ~ a2

at2 at1I at 2at I at 2  2 1 at 2  2 2 2 at 2

3 2 2 3+ ta K-t

(195)
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Next, multiply through (187) by c, and add the resulting equation to (191) plus (192).

Multiply through (194) by a, (193) by b, and (190) by ab, and add the sum of these new

equations to (195). We then can write

dx~t) dx~t) -

cx(t1 X(t s + X(t) x(t

83r, 83A a zip 82^ 82^ ap A

+ + (a+b+c) + b -- +a t---+ (ab+bc) -j- + (ab+ac) + abcr
t2at 8t1  2 1at at 1 2

a 4 a4A a4 a4^ a83 3A 8
Otz~t• 28t~l 2 +--tat + (a+2b. d, (2a+b+d) -O2t

8t2 at I at2 at1I at2at ati at I at 2at1I at1

a39 a29 a 2 a82
+ a T + (ad+Zab+bcie t + (ab+bd) a-t- + (ab+ad)---

at23 (a2a.- 28 1 at at 2

AA

+ (abd+be) jt + (abd+ae) -a-- + abey

or

84^ a 4^ 34^ a 3^ a 3^ 83
t---+2 tt+ (a+2b+d)t- (a+b+d) -+b-

atDOt ad at 2 at3at atadt at28t 9t3

+ a t--•- + (ad+2ab+bd+e) atzat--- + (ab+bd) -8t- + (ab+ad) --Ot

at2  at1  a21

+ (abd+be) j + (abd+ae) -•--+ abey'

=cx(t) x(t 2) + x(tl) dx(t 2 ) "x(t1) (196)

We have thus obtained a single differential equation relating y(t) and x(t). The equa-

tion is a linear partial differential equation with constant coefficients.

This linear partial differential equation is particularly well suited to solution by

means of the two-dimensional Laplace transform. Taking the transform of each side,

we find

+(ab+bd)s 1+(ab+ad)s, 4(abd+be)s I+(abd+ae)s 2 +abe ]Y(s1 . .)

= (Sl+S 2+c) X(s 1 ) X(s 2 ).
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Factoring the polynomials in this expression and solving for Y(s 1 , a, we have

51+5s2 -X(sI) X(s 2). (197)

(s1+b) (s2 +a)[(sI +s )2 +d(sI +s2)+e]

We now note that

S+8 2+cHZ~sI, s2) 1=
S2(• +b)( 2 +a) (s +s 2 ) +d(sl +s 2 +e]

is the transform of the Volterra kernel, h2 (TII, T2 ), of the system of Fig. 1 when the sys-

tem is characterized by the integral equation

y(t) = 5 T h2 ( 1 , T2) x(t-7 1 ) x(t-T2 ) dTId'r2 . (198)

In fact, taking the inverse transform of (197) we have

P(tl0t 2) 5 h2 (rI'v 2 ) x(tI-T 1 ) x(t 2 -r 2 ) drldT2

from which (1 98) follows by setting tI = t2 = t.
From this example the following observations may be made.
1. Given a system of equations that are the dynamic description of a nonlinear sys-

tem, by extending the domain of definition from one dimension to two dimensions, we
were able to find a single linear partial differential equation that also characterizes the
system. That is, by extending from one dimension into two dimensions, a one-

dimensional nonlinear problem was converted into a two-dimensional linear problem.
2. Equations 183-186 and Eq. 198 describe the same situation. A system that is

characterized by a single integral equation is equivalently described by a set -f several

ordinary differential equations and a nondifferential equation. A description by one non-
linear ordinary differential equation does not seem to be possible.

3. Whenever a system is characterized by an nth-degree Volterra kernel having a

rational transform, a linear partial differential equation with constant coefficients can
be found which relates the auxiliary output function y(t 1 .... tn) to the input function x(t)

If the kernel is of the class that can be realized exactly with a finite number of linear

systems and multipliers, then an equivalent description by a set of ordinary differential

equations and nondifferential equations can be found.
Although the example and observations presented here have no, yet led to the solution

of any problems that cannot be easily handled by other methods, it is felt that the view-
point pre.iented is unique and may lead to a deeper understanding of the properties of

nonlinear systems.
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IX. CONCLUSION

We have studied some techniques for the synthesis of nonlinear systems. The sys-

tems considered are those that can be characterized by a finite set of Volterra kernels:

{hn(ri... , Tn): nz 0, i, 2,... ,N}. The approach adopted throughout has been to consider

the kernels one at a time, using as basic elements ii. the synthesis linear systems and

multipliers.

We have presented a procedure for testing a given kernel tr.nsform to determine

whether or not the kernel can be realized exactly with a finite number of linear systems

and multipliers. The test is constructive. If it is possible to realize the kernel exactly,

a realization is given by the test; if it is not possible to realize the complete kernel

exactly, but it is possible to break the kernel up into several lower degree components,

this will also be discovered by the test.

An extension to nonlinear systems of the impulse-train techniques of linear system

theory is given. Although applicable in principle to higher degree systems, the use of

impulse-train techniques as graphical methods is effectively limited to second-degree

systems.

The use of digital systems is recognized as a powerful tool in modern system theory.

We have developed properties of sampling in nonlinear systems, in order to facilitate

the use of digital techniques in the synthesis of nonlinear systems. Bandlimiting in non-

linear systems is discussed, and delay line models for bandlimited systems are given.

The transform analysis of nonlinear sampled-data systems by means of the multi-

dimensional z-transform is presented. Computation algorithms for input-output com-

putations are given for direct computation from the multidimensional convolution sum,

from the associated partial difference equation, and from a decomposition of the non-

linear sampled-data system into linear sampled-data systems.

A relationship between time-variant and time-invariant systems is presented, in

which time-variant systems are shown to be related to time-invariant systems of higher

degree. This enables one to use for linear time-variant systems the properties and

techniques developed for second-degree time-invariant systems.

A note on the multidimensional formulation of nonlinear systems from the differential

equation point of view is given; it is seen that some nonlinear problems in one dimension

can be mapped into a linear problem in a higher dimensional space.

As with linear systems, the problem of the synthesis of a nonlinear system is the

problem of finding a finite-dimensional state space in whict. the system may be

described. One expects that an attack on the problem directly from the state space point

of view may be fruitful.
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APPENDIX A

Proofs of the properties of z-transforms given in Chapter V are given below.

: : -k I " nf[(kI-bI)T,... (k-n-bn)Tkz, zn

• k n " 0 0  k l "-oo

-b -b b 0 -(k -bl) -(kn-b)a z I " zn n.. I f[(kl-bl)T.. . (kn-b)TJzl I.. Iz n
kn=U-o0 k I-on

-bI -ba zl .. n n F(zl, ... OZ n)

A. 2 Proof of S. a. 2

G eac k T -ankT -k -k
I ... I ee f(k 1T,....knT) zI .z nn

kno-co klS_-0c

a cc cc f(k T,... ,kT) (e z), ... Zn

kna-co ku 1-QO

a F(ealTz,... ,e anTzn)

A. 3 Proof of S. a. 3

G go -k -k"-Tzia I ... f(klTo,... sknT) zl . z n

kn1 -co k U-ao

00o kouko 
k

''. Y (-T)f(k To ... sk T) zi .l zn
kna,-co k I 'U-00c i '

00 00 
kka .. kiTf(klITo...k nT) zI .. zn n0- .T if(-rI,... Tn)

kn -co k I-co
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.4 Proof cof S. a. 4

V~~~~~ ~ ~ .. zZI.. V..Pz

PD.-0o Pi a-00

p nM-0 1a- k n -w k I -co

*g(pT-kT,.. - Pn T-k n T) z1 I ..

a Z f(k IT... .k nT) I ...

k n -oo k I -00 pnu-w Pi S-0

-p1  -PD

w0 0 -kIc -k n

a F(z1 9.... zn) G(Zlo ...oz n)



APPENDIX B

Proofs of the properties of modified z-transforms given in Section V, and the details
ot Example 6 are presented here.

B. I Proof of 5. b. I

"'' •-qklT-A T-(I-ml)T,... ,knT-AnT-(l-mn)T] zl .. n -I -

kn=-ce kIr-3o

k1 nF U-4

S ... z Fm(ZIl +m I;...; Zn, I +mn-An) for0 <mi<Ai<l, if =,-.n.

For 0 A Ai 4 mi < 1, we may write the left side of the equation above as

"'"f~klT-[l-(mi-al]T,... ,knT-[ II( nA)T} zI I. Zn n
k n =-; =3

= Fm(Z 0 m 1 ;-A .. ; Zn mn-n).

For shifts equal to an integral multiple of T, the proof of this property is the same as
that given above for the ordinary z-transform.

B. 2 Proof of 5. b. 2

jo jo e',[kL-(I-rnd)TJ -an[knT-(1-mn)TI
"e ... e f[klT-(l.-m)T .,knT-(l-mn)Tjkn=-jo kl ::-JO ,

z-k I .. -k
I z n

al(l-m1 ) an(1-ran )/a

= e ...-m e a I )f[klT-(l-m. ) T... knTm(l-mn )T]
kn=-4o kl=-V

Se a IT YkI .. ( a nT zn-k n

=.e.. e nF (eF e z Pm I e n zn, m n) .
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B3 Proof of 5. b. 3

I n

T 0i1F(im;. a zkT-,- in,)T]q I T...m kT, Tf.kT-(1-mn)T] .z k, T(1z n T
kn-oO k1 =-00

z I Zn

T[(mi-1) Fm(ZI 0mi;..znr) m z A Z m 0

B. 4 Proof of 5. b. 4

When f(-r1 ., r n) is continuous from the right in each of the variables,

@00g - kc -kn
Jim Fm(z'mi; ...; znPmn) = L~f(kIT-Tp.. ,knT-T) zI ..

in=sO ki1 =-00

== 1- , .1 F.l .. n

IZ **" n Fzg*#n)

When f(T,.. rn ) is continuous from the left in each of the variables,

jim F (Z1 O ,m1  .; 'm COn .. f(k Tp. *knT) z -k . kn

m ns kn=**@0 ki = 0

=F(z 1,... a n.
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Be 5 Details of Example 6

Direct Transform:

ku

+ -2T(ke+i*..) ZkA2) k
k1 1 k2 =0

+ -e (-~2T(kl+m*l)) Zk 1 (k2+k1 )
k 2 ) 1 O

I e-2T(m -1) -1+ I+ I

-6 I- -1 -T I -1 I -3e-T Z- i- 1 IT lj~eZz~ z -1lT- 3 3.
1- z1  12 2- 1-

1 (1ezl -1 2 T~ 1e 3 Tj 3 +.1)(16T -3T -l +e16T -- 2 e-98TZ33
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APPENDIX C

Proofs of properties of the transforms of causal functions in Section S. 3 are given

low.

I Proof of S.c. I

For causal f('I, ... , 'n) we have

CO46 C - kIc - kz k
F(Zl,..zn) = I ... 'V f(kT2 T... kT ) z, . ... z n.

kn=0 k2 =0 kI=0

ten

0O 00 
- k

lim F(z,1 ... ,zn)= I ... I f(0,k 2 T,...,knT)Z2 2Zn
ZI 00 kn=0 k2 =0

For z2 , ... , Zn a similar relation holds. Hence

lim F(zI ..... zn)-*-ý lim f(-r1 ..... r-n)
z 1 -. 600 .00

2 Proof of 5. c. 2

"I + T , - 2 . . , n - f'1 . . . .Ir - f)-

0 00 p -k T kl -kn

lim . .[f (k T+T, k2T , ... ,tknT)-f(klT, .... ) zI • zn

po =k0o k2=-W kI=-P

Le expression on the right may be written

oo o -pIck zIk 2  _kn

--... 0 lim + [f(klT+Tk 2 T, ... knT)-f(kT, .... knT)Vzl Z 2 ... Zn.

=-0 k 2 =-oo p kl=-P

For zI = 1, the inner sum is
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0
ulrln [f(k T+T.k T,...,,kT)-f(kT.....knT)J

+p

+ I [f(k T+T, k2 T.To pknT)-f(k1T..knT)I
0k 0

Af(T, k2To..., knT) + f(0, k2T,..., knT).

These sums telescope, to give

lim f[(p+l)T, kT,...,kT] - f(O,k2T,...,knT) + f[(l-p)T,k2T,..., knT
p- n 2 n Z

+ f(Tk 2 T,...,knT) - f(T, k2 T,..., knT) + f(0, k2 To .... knT).

Now since f(vr, ... , -rn) is causal by hypothesis, this becomes

lim f[(p+l)T,k T, ... , k T].P.00 n

Hence, if this limit exists,

lim f(-l,...,dn)--a. lim (Zl-1) F (z,..zn).

rz l-

A similar relation holds for i = 2, ... , n.

C. 3 Proof of Eqs. (84) and (85)

We prove only Eq. 85 from which (84) follows also by 5. b. 4.

Define ST(?I ...1 n) by

6T("' Tn) [k O Uo(rlkl) ..." Uo(,'n-knT)]"

Then the Laplace transform of 6 T(r ... ,Tn) is

n I
AT(S, . sn) =1 siT•

i=l -e

For causal f(TI,...,. rn) we may write the modified z-transform Fm(znIml;... ;zn,mn)

as the z-transform of

f*(lTmI; ... Tn mn) = f(V-iT+miT ..... rn-T+mnT) 6 T(,r .... , rn)

= f(-r,+m 1 T-T, .... , in+mnT-T) 6 T(i-T,.....T.n-T).
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k is clear that F*s, . .. , sn), the Laplace transform of f*(-r,.. P n}, evaluated at
.at Zl = 1, ... ,n is the z-transform of f*(rI, ml; ... ;n,, mn). The Laplace trans-

orm of a product of functions results in the complex convolution of the Laplace trans-

orms of the factors. Now the Laplace transform of f(r'+mIT, ... , Tn+mnT) is

ismIT xnmnT
e ... e F(si,... Sn)#

vhere F(s 1 , . .. , sn) is the Laplace transform of f(- 1 , .. Tn). We then have

Vm(zml;...;Zn, mn) =eSIT .. snT SmT... e F(sI, .. , sn)

i=l,...,n

is AT (S ir .... 0 sn)

vhere 0 denotes multidimensional complex convolution. This is the expression given

:xplicitly in (85). We note that in this expression, because of the nature of the Laplace

nversion integral,24 it is assumed that f(l ..... rn) is defined as the average value at

ump discontinuities.
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APPENDIX D

Equations stated in Section V without proof are justified below.

D.1 Proof of Eqs. .16and 117

We shall prove (116) for n= 2. The extension to the higher dimensional case is clear.

Y(2)(T'kT)•wj)k-I k-l..
k I 2 2 Y zzx( 2 )ZIPzZ2 ) dzldz?.

1 2

Let z = zIZ2 ; then dz= zI dz 2 and

Y)(kT, kT)- = wj I r~ 1z t k'Iz-I Y 1(z," 2- dz dz;

and hence

Y(z) = I-• z-1Y ( V zzI •)dzI"

For the modified z-transform ( 117), we have

Yl2[(k,-I+mITlk 'I+m z)T] 1 2-1-• Y()• 1r 0l- k Z0-11

Setting k I = k2 =k and mI1 =m 2 = m yields
,1 2 -

y[(k-m+l)T] = f_\) 2r (Z (zlzZ)k-lY(2)m(z M; z 2.,m) dzldz2 .

From this point the proof follows that above for the z-transform, and (118) follows for

n = 2. The extension to higher dimensions is clear.

D. 2 Derivation of Eq. 118

C-L r z-'A(z) I iirj _aZ_ e-bT•,z .- 1
eaTzl - e i dz

I Z

Az) Ia e ebTz dz =A(z) I

A(z) Z e-aT e bTz - z I -(a+b)T -1
I I-e Z-
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